
We are so happy that you want to improve your Hopscotchin' skills!

This activity guide is made for everyone: parents, youth leaders,
Hopscotchers, and you! In fact, we designed this tool to empower anyone
to teach and learn about Hopscotch. You can use this guide with your
child, an after school club, your friends, or your classmates. If you're new
to Hopscotch and want help practicing the basics, these activities will be
your companion—you can even go through them on your own. For
experienced Hopscotchers, this guide will expand your understanding of
programming and inspire you to tackle new coding challenges.

These activities introduce and reinforce basic Hopscotch skills and, in the
process, teach fundamental computer science principles.

What's that, you ask?

Computer science (also known as computer programming, computer
coding or computer engineering) is a very misunderstood field. Many
people think that using computer programs, like Microsoft Word or
Google, is computer science. Others see programming as a trade skill,
much like plumbing or electrical work. However, computer science is
neither. Rather, it is the study of computational thinking, or how to use
logical thinking and abstraction to

In the same way that English is not about grammar, and history is not
about memorizing dates, computer science is not really about code
or computers.

Just as you make connections between events in history, computer
science asks you to investigate the interactions between complex systems.
When you solve a math problem, you leave little room for ambiguity and
show the sequence of steps thoroughly; we do the same in computer
science. In English class we ask you to understand meaning behind a story,
and in computer science we encourage you to take literal numbers and
letters understand them within a system.

Your by learning computer science,
and it will show in your performance in other disciplines. We hope these
activities engage and inspire you. Enjoy!

--The Hopscotch Team

Now, let's have some fun!

ACTIVITY GUIDE

IN':

1: What is Computer Science and Hopscotch?

2: Loops!

3: Loops continued!

4: Totally Random

5: Get Organized

6: Put It All Together!
7: Final Project

HOPSCOTCH ACTIVITY GUIDE
Verison 1.0 (September 2014)

ACTIVITY 1: WHAT IS COMPUTER SCIENCE? 1

?

The first and perhaps most important lesson of
computer science is the notion that

If you fully understand this concept, and begin
to think of everyday processes (making a
sandwich, getting to school) as a set of
instructions, you will begin to think like a
computer scientist without trying all that hard!

This activity focuses on identifying everyday
things (phones, computers, etc.) that only work
when given instructions, getting comfortable
writing instructions in Hopscotch, and ensuring
that you understand that the order of instructions
matters.

Hospcotch uses some computer programming
vocabulary that you may want to review as
you get started:

 An action that the computer recognizes
and that causes it to do something is an event. In
Hopscotch, events include "When the iPad is
tapped" or "When the project is started"

When you save a set of blocks, it’s called
an ability. We have some pre-made abilities for you
to use when you first open Hopscotch, including
“Dance”, “Draw a Triangle”, and “Go For a Walk”.
What we call abilities in Hopscotch are known as
functions or subroutines in other programming
languages. Easily replicable routines are a key
component of abstration, a concept in computer
programming, and allow you to scale your code
and create complex programs.

Rules tell your object what to do and when to
do it. When you make an ability and pair it with an
event, you create a rule. For example, if you choose
the event “When project is started” you can then
pair it with the “Move distance” ability. This creates
a new rule: every time you start your project, your
object will move the distance you set.

ACTIVITY 1

What is Computer Science? and Introduction To Hopscotch

HOPSCOTCH ACTIVITY GUIDE
Verison 1.0 (September 2014)

ACTIVITY 1: WHAT IS COMPUTER SCIENCE? 2

?

• Basic understanding that computers only do
what they are told, in the order they are told
(step by step thinking).

•

• Age appropriate understanding of computer
science and programming languages with
real world examples:

4th Grade: Understand that computers
can be programmed to solve problems.
Examples include cell phones,
computers, calculators.

5th and 6th Grade: Identify more
abstract uses of computing including
GPS devices, cars, watches, etc.

7th Grade: Identify potential problems
that might be solved by computers (e.g.
computers might one day be able to
predict the spread of diseases)

8th Grade: Easily spot uses of computing
and potential problems that can be
solved by computing. Point out problems
that are more difficult to solve via
computer than others (e.g. GPS vs. life
advice).

ACTIVITY 1

What is Computer Science? and Introduction To Hopscotch

ACTIVITY 1: WHAT IS COMPUTER SCIENCE? 3

ACTIVITY 1: Getting started!

CODE
DEMO

5 min.

Review these slides to familiarize yourself with the
concept of computer science.

Review the below the Monster Hugs code. Then, try coding it in
Hopscotch to see how it works. This is a simple but powerful
example of how programming languages work.

SLIDES

 5 min.

Monster Hugs code

https://www.dropbox.com/s/47vkvd6xxr76nyd/Hopscotch%20Slides%20Lesson%201-%20What%20Is%20Computer%20Science-.pdf

ACTIVITY 1: WHAT IS COMPUTER SCIENCE? 4

ACTIVITY 1: Getting started!

CODE
DEMO

5 min.

Create a new Hopscotch program and walk through each
menu (Movement, Drawing, etc.) and the kinds of code
blocks they contain. Test some of the blocks in each menu
by dragging them into the editor and pressing play to see
what happens.

For example, use the move block to try out the
Movement menu.

ACTIVITY 1: WHAT IS COMPUTER SCIENCE? 5

ACTIVITY 1: Go for it!

 20 min.

Take 10 minutes to explore and try out the app. If you don't
know what to do, start by having your object (character) draw
a line wherever it goes.

Your first coding challenge is to write a program that
draws a square without using the repeat block.

• Begin by pretending that you are the object and walk
around the room in a square motion.
• Record the steps.
• Investigate which Hopscotch blocks are most like the steps
that you took.

 10 min.

• Drag the blocks of code into the editor to write your code!
• Try it out! If you need a hint, flip to the next page to see
the solution.

 1: WHAT IS COMPUTER SCIENCE? 6

 1:

Square Lab project
Square Lab code

Well, that was fun! Here's our code and the drawing it
produced. What did yours look like?

CODE
REVIEW

. min.

ACTIVITY 2: LOOPS! 7

As you have learned from the last activity,
computers have a finite set of tasks they can
accomplish. But when these tasks are
combined properly, amazing things can be
built.

Imagine that you are sending handwritten birthday
invitations. While the names and addresses of
your friends are different, the process of writing
invitations is the same. You stuff the envelope, write
the address, close the envelope, and add a stamp.
You could use a loop to repeat this process: For the
number of friends that I have: stuff an envelope,
write that friend’s address, close the envelope, and
add a stamp.

There are actually many different kinds of loops.
The two most popular are called and

. For-loops repeat an instruction the
number of times indicated by the programmer:
“Clap once. Repeat each student in the room.”
While-loops will continue to loop some
condition is true: “Clap once. Repeat while my hand
is in the air.”

This lesson is specifically about for-loops and
getting comfortable with using loop syntax. In
Hopscotch, we currently only support for-loops. Our
version of for-loops can be implemented by using
the "repeat" and "repeat forever" blocks.

 Activity

• Gain more comfort and practice with
sequential thinking.

• Gain basic understanding of for-loop
syntax.

• Basic introduction to abstraction: e.g. students
can identify which lines of code represent lines
vs. corners in a square.

Loops!

ACTIVITY 2

In addition to running instructions
sequentially, computers are very good at

 In
computer science we call this a .

ACTIVITY 2: Getting started

ACTIVITY 2: LOOPS! 8

CODE
DEMO

5 min.

SLIDES

 10 min.

Walk through the solution code to previous activity’s square lab if you
feel like you don't completely understand how it works. Review
the commands that represent different parts of the shape (ie: move
commands are representative of sides, and rotations are
representative of corners). If you're doing these lessons by yourself,
ask a parent or friend to review your code with you.

Square Lab code

Familiarize yourself with loops using these slides.
Do you think that you could draw a square using loops?

Try it out! The solution is on the next page.

https://www.dropbox.com/s/3cbox3v0ume5n5a/Hopscotch%20Slides%20Lesson%202-%20Loops%21.pdf

ACTIVITY 2: Getting started!

ACTIVITY 2: LOOPS! 9

Great job! Here's how we made a square using a repeat
block:

Square with loops

CODE
REVIEW

5 min.

https://www.dropbox.com/s/3cbox3v0ume5n5a/Hopscotch%20Slides%20Lesson%202-%20Loops%21.pdf

ACTIVITY 2: Go for it!

ACTIVITY 2: LOOPS! 10

 30 min.

These are arranged in order of difficulty. 4-6th graders should be able
to accomplish the first, 7-8th graders the second, and the third could
be attempted by advanced students.

Star Person Bicyle

Look up line drawings on the internet—drawings done using pen or
pencil, and drawn in one continuous line , like this one. After doing so,
try creating a line drawing in Hopscotch (like the below).

With your remaining time, write code to create a line drawing of your
choosing in Hopscotch. It is worth noting that drawings with curves are
ambitious; choose subjects with few curves. Keep it simple, or you
could spend all day on it!

http://eileenkosasih.files.wordpress.com/2012/02/52-whale-line-drawing.jpg
http://eileenkosasih.files.wordpress.com/2012/02/52-whale-line-drawing.jpg

ACTIVITY 3: LOOPS CONTINUIED! 11

Looping is only powerful and useful to programs
when you can understand when and why it is
used. Now that you are comfortable using loops in
Hopscotch, you should begin thinking about loops
in products and processes you use in your
everyday life.

Are there loops in the games that you play? For
instance, in a soccer game, there are two halves
and the exact same rules for a 45 minute game
are repeated each time. Are there other loops
that you perform in your everyday life (for
example, eat cereal until it’s done, run 5 laps in
gym class)? Are there some loops that repeat for
a definite amount of time and others that repeat
indefinietly (for example, a stop light)?

Loops and sequential thinking are the building
blocks of algorithms. The goal of this lesson is to
understand the role of both of them, their
interaction, and where each should be used.

 Activity

• Achieve basic proficiency in for-loops
and understand when and why they are
used.

• Gain more comfort with very basic abstraction.
Identify loops vs. sequential instructions in apps
you use or games you play, and identify why
each was used.

For example, in Angry Birds, the game creators
used a loop to make the birds at each level. The
birds are identical from level to level. However,
the creators could not use loops to build the
different block structures that need to be
destroyed at each level. Each block has a unique
location. If loops were used, each level would be
exactly the same as the last.

Activity 3

Loops Continued!

Activity 3: Go for it!

ACTIVITY 3: LOOPS CONTINUIED! 12

 40 min.

During this activity you will write code to draw your signature in
Hopscotch. Your should attempt to do so in cursive and not in block
lettering. If this proves to be too difficult, or you think you need more
time practicing with loops, you may use block lettering instead.

Prior to beginning, write your name, initials or a word of your choice in
cursive, paying close attention to where turns are made and where
for-loops (“repeat” blocks) might be used to make curves. Once you
have thought it through, work on your code for the remainder of the
lesson.

If you are struggling with curves in loops, try the smaller challenge of
simply making a circle. It’s also worth noting that letters need not be
perfectly round, smooth, or proportionate! It would take hours to get a
perfect representation of your name in cursive in Hopscotch. .. you
have a perfectionist streak, try giving yourself a time limit for a
first version and then perfect it later.

 2 min.

Robo-Signature

ACTIVITY 4: TOTALLY RANDOM 13

In the last activity, we learned that loops and
sequential thinking are the building blocks of

. Algorithms are at the heart of
computer science: they are the recipes that
computers follow to solve problems.

One way to help understand how an algorithm
might be applied to a general problem rather than a
specific problem is to imagine a maze.
One could solve this maze simply with a few
commands:

Forward
Turn -90 degrees
Forward
Turn 90 degrees
Forward

However, if the maze is changed, this set of
commands won’t work anymore. The question
becomes “how do we write an algorithm to solve

 maze” rather than just this maze. Another
example might be “how do we write an algorithm
to find factorial of any number” rather than just one
number.

Because the best algorithms are designed to deal
with generalized and sometimes ambiguous
inputs, the concept of is very
important to many algorithms. For example, if you
claimed that your algorithm to find factorial of any
number really worked, it could easily handle a slew
of randomly generated numbers.

Randomness can also be used to make algorithms
better. It is used all the time in video games to
simulate chance (e.g. a slot machine). It can also be
used in our maze example. There is no set of
specific commands that can solve any maze.
However, if we continually try random commands
(e.g. forward, turn by random amount) until we
reach the end of the maze, we will eventually solve
the maze.

One might ask, “why not simply follow the wall?” We
must remember that computers are not like humans.
They have no concept of what a wall is, or even the
capacity to sense a wall. We’d have to write a new
algorithm for that. However, there’s no need to: we
can get through a maze without worrying about walls
at all. In fact, random movement is how the Roomba
accomplishes the task of cleaning a whole room!
This kind of randomness is found in nature as well.
For instance, natural selection occurs when random
gene mutations in an individual unexpectedly give it
an edge over others in the species.

Algorithms and randomness go hand in hand
conceptually. One represents the set of steps that
solves a particular problem; the other represents the
set of possible scenarios that it can be applied to.

Algorithms are most useful when they can be
applied to a general problem. An algorithm to
solve any Rubik’s Cube is much more useful than
an algorithm to solve just one possible Rubik’s
Cube. Often times the solution is simpler than you
would think!

ACTIVITY 4

Totally Random

ACTIVITY 4: TOTALLY RANDOM 14

 15 min.

ACTIVITY 4: Getting started!

SLIDES

 10 min.

Familiarize yourself with randomness in nature, science, and
computer science with these slides. (The Absolut video on the
last slide is optional, as content may not be age appropriate.

Let's move! Construct an algorithm to solve any maze:

1. Begin by drawing a simple maze and writing instructions with a
pen or pencil to get out of the maze.

2. Consider whether this same solution would work if you changed the
maze.

3. Consider if randomness could be used to help someone get
out of any maze while they were blindfolded. (e.g. move forward,
turn a random direction -- given infinite time this will always
work).

4. Working with another person, kinesthetically try the solution.
Select a goal point in the room (e.g. the door) that you have to
get to. Choose a random starting point across the room;
distance from the goal does not matter.

5. Move forward by random amounts, and then turn by
random amounts. You can select these numbers yourself, roll a
die, or pick out of a hat. Play until you have finished or time is up.

6. When complete, consider that distance from the door, or
location, did not matter because you eventually reached
the goal through random movements. If you or another player
did not reach the goal, would you have eventually reached
it?

We do not expect that you should master both
these topics. Rather, you should begin to
understand that

and not just specific ones. Additionally
you should feel comfortable using the
“random” block and understand that using it will
cause the outcome of your program to be
different each time.

 Activity

• Introduction to computational thinking and
algorithms. Understand that algorithms are
recipes that computers use to solve
problems.

• Have a basic understanding that computers can
solve general problems, not just specific ones.

• Understanding of how to use the “random”
block.

https://www.dropbox.com/s/f5e9nbjypmv13qd/Hopscotch%20Slides%20Lesson%204-%20Totally%20Random.pdf

ACTIVITY 4: Go for it!

ACTIVITY 4: TOTALLY RANDOM 15

 15 min.

CODE
DEMO

5 min.
Review some of the below examples of how randomness can be used
in Hopscotch as provided here:

Edit your signature code to utilize random colors and pen
thickness (hint: use blocks in your Appearance menu).

Rando-Rainbow-Robo-Signature

Random Code Random output for line colors and line width

ACTIVITY 4: TOTALLY RANDOM 16

4

Now that you’ve been coding for a while, you may
have noticed that code is often associated with an
action. A very simple example might be the power
button on your computer. When you press it, some
code is run to turn a computer off or on.
A more complex example is collision detection in
Angry Birds; when a bird hits a block, that block
should fall down. To associate a block of code
with a specific action, we use a function called
an “event handler.”

Event handlers are a great way of organizing and
generalizing code. For example, you might have a
block of code that you want to run when the user
taps anywhere on the iPad. Regardless of where they
touch, the exact same code will run. If you had to
duplicate that code for every possible spot the user
could touch, you’d have a lot of repeated code for
no reason.

The goal of this activity is to get comfortable writing
event handlers and to identify where event
handlers are used in the apps and products you use
everyday. Examples might include an event handler
to bring up the dialing interface on a phone when
the phone detects a finger touching a certain icon,
or an event handler in a game to slash a piece of
fruit when a finger has made a swiping motion.

 Activity

• Introduction to basic functions/event handlers
(e.g. the idea of repeated code). You should
feel comfortable with event handlers in
Hopscotch.

• Age appropriate understanding that actions can
be linked to a set of code (e.g. pressing a power
button will run code to turn a computer off or
on.)

Get Organized

ACTIVITY 5

SLIDES

 5 min.

Use these slides to learn about event handlers and show how
they can keep code clean and organized.

Review a visual example of beautiful functional code
versus repeated code.

ACTIVITY 5: Getting started!

https://www.dropbox.com/s/wo26tl3zx5maxij/Hopscotch%20Slides%20Lesson%205-%20Events.pdf

ACTIVITY 5: Getting started!

ACTIVITY 5: GET ORGANIZED 17

Look up the artist Piet Mondrian. A lot of his paintings look like
many different colored squares on a canvas. With this activity,
we're going to write a program in Hopscotch that will generate a
Mondrian styple painting!

Try writing code to draw a square in a random location when the
stage is tapped. Once this is complete, update it so that the
squares have a random color and thickness. The random bounds
for x are 1 - 1024, and the random bounds for y are 1 - 768.

Turn the page for the solutions!

CODE
DEMO

10 min.

Mondrian Project

ACTIVITY 5: Getting started!

ACTIVITY 5: GET ORGANIZED 18

Mondrian Code

Mondrian Advanced Code

If you're more advanced, you can also try this
example code.

Who knew that you could make such cool paintings
with code! Here are two possible ways to program
your Mondrian painting:

CODE
REVIEW

5 min.

ACTIVITY 5: Go for it!

ACTIVITY 5: GET ORGANIZED 19

Now, look up the artist Jackson Pollock. For the remainder of
the lesson, write a program to imitate Jackson Pollock style
paintings. Each time the user taps the iPad, the object should
move a random direction, painting a stroke of randomly colored
paint of a random thickness.

Turn the page for a possible solution.

Jackson Pollock project

 30 min.

ACTIVITY 5: Go for it!

ACTIVITY 5: GET ORGANIZED 20

Jackson Pollock code

Ta da! Here's one way to program a Jackson Pollock
painting. What did your code look like?

CODE
REVIEW

3 min.

ACTIVITY 6: PUT IT ALL TOGETHER! 21

You have come a long way. You actually know
nearly everything necessary to write any
algorithm or program! Thus far, however, you
have been working on smaller projects focused
on one specific skill.

The goal of this assignment is to gain comfort
working on a project where you must combine
what you have learned, independently identify
whether they need loops, event handlers, or just
straightforward instructions, and develop a plan
before they begin coding.

This problem is actually not harder than previous
assignments, but requires more independence,
planning, and abstract thinking skills as there is no
introduction suggesting a way to solve the problem.

It is helpful to write down the process/algorithm you
are trying to achieve in plain, English before you
begin. Then read through what you wrote and try
to identify the event handlers and loops. Once that
is done, you should write your algorithm again by
hand, but this time try to make it look more li ke
Hopscotch. Once this is done, you are ready to code!

This process is extremely important as

 Only after
these two steps are completed does actually
coding become relevant.

 Activity

• Gain comfort writing a program from start to
finish independently.

• Practice thinking about the problem and
writing “pseudo-code” or a plan of how the
code might work before you start coding.

Do you know what an Etch-A-Sketch is and how to use it (old folks
may remember using it as kids!)? Review how it works, and watch a
video of an Etch-A-Sketch masterpiece. Once complete, you will
write your own Etch-A-Sketch for iPads! When the user tilts up,
down, left, or right, the object should draw a line in that direction.
When the user shakes the iPad, the screen should clear.

 5 min.

ACTIVITY 6: Getting started!

ACTIVITY 6

Put it All Together!

https://www.youtube.com/watch?v=vVA9wdiIlN4

ACTIVITY 6: Go for it!

ACTIVITY 6: PUT IT ALL TOGETHER! 22

 40 min. Use the remainder of the lesson to write your Etch-A-Sketch. Turn
the page for one possible solution and output.

ACTIVITY 6: Go for it!

ACTIVITY 6: PUT IT ALL TOGETHER! 23

Etch-A-Sketch project

Etch-A-Sketch code

Boom! You've created your own etch-a-sketch! Here
is how we built our etch-a-sketch; do you have a
different solution?

CODE
REVIEW

3 min.

This assignment is largely to reinforce the
goals of the last activity and to spend
more time coding!

Additionally, you may enjoy assignments that
you create yourself, without instructions, and
therefore might love computer science a little
more after this project!

The process of coming up with an idea that you can
translate into code is an important one, as you must
exercise the skill of identifying computable vs. non-
computable problems (e.g. a video game vs. a mind
reading program.) This assignment also gives you
the chance to talk about your algorithms with
others.

 Activity

• Gain comfort generating ideas and
translating them into code independently.

HOPSCOTCH ACTIVTIY GUIDE

Sept 2014 v. 1 | Contact: liza@gethopscotch.com

ACTIVITY 7: FINAL PROJECT 24

All iPads Supported | Download: http://hop.sc/gethopscotch

Final Project

ACTIVITY 7

 40min.

ACTIVITY 7: Go for it!

 Work on a project
of your choice!

You could potentially add another lesson where you present your
coding solution and talk about it in a short, five minute presentation
in front of others (classmates, family, friends).

SLIDES

 5 min.

Use these slides to encourage yourself to continue your

exploration of programming.

https://www.dropbox.com/s/h6qojcqbbjvxix6/Hopscotch%20Slides%20Lesson%207-%20Keep%20Coding%21.pdf

	Untitled

