
Learn to Code - Make Cool Stuff

Curriculum

TABLE OF CONTENTS

2 Overview
4 Materials
5 Core Coding Concepts
6 Standards
7 Guide to the Lessons
11 Lesson 1: Crossy Road
23 Lesson 2: Geometry Dash
33 Lesson 3: Which Emoji Are You?
46 Lesson 4: Flappy Bird
57 Lesson 5: Subway Surfers
68 Lesson 6: Can You Escape?
78 Optional Extra Lessons & Extensions
79 Rubric for Evaluating Student Work
80 Glossary for Younger Students
81 Glossary for Older Students
82 References
83 Acknowledgments

OVERVIEW 01

HELLO!

Dear Educators,

Hi!

We’re really excited that you’re going to teach your students to program, both for them and for
you. Kids have remarkable imaginations, and creating computer programs is an amazing way for
them to express themselves. We’ve seen kids create astonishing things using our simple but
powerful tool. We know you’ll see the same when using Hopscotch, and hope you share what
your students create.

Anyone, regardless of their experience in programming, can teach this curriculum. Just as
Hopscotch was built on the principle that anyone can become a great programmer, this
curriculum is designed on the premise that anyone can become a great programming teacher.

Programming is a way of thinking, building, and expressing yourself. Just as English is not really
about grammar, and history is not memorizing dates, computer programming is not actually
about code or computers. Just as we ask students to make connections between events in
history, we ask students to investigate the interactions between complex systems in computer
science.

 But don’t just take it from us. Here’s what some Hopscotchers have to say:

“The thing I love most about playing Hopscotch is that you can make mistakes and try
again and it doesn't matter.” — Julia, 10

“Hopscotch is the best platform for expressing our inner creativity!” — Nico, 12

“My kids love working on this app and being able to code has given them a much better
understanding of how computers work and has demystified much of the tech in their lives.
Now they look at something on the computer and say, ‘I could code that!’ It has changed
their lives for the better.” — Jesse, 5th grade teacher

Goals of the Hopscotch Curriculum:
- Equip students with a solid foundation in programming fundamentals.
- Expose students to coding culture: iteration, pair programming, accepting feedback, sharing
 and attribution.
- Enable students to learn transferrable coding skills that prepare them for diving into another
programming environment (like Java or Ruby.)
- Build self-confidence and comfort taking risks and making mistakes.

By learning to program, your students’ creative, analytical, and abstract thinking skills will
improve, and it will show in their performance in other disciplines. Coding is not just for future
software engineers—it’s something that anyone can and should explore!

OVERVIEW 02

HELLO!
This curriculum builds a foundation in the following Computational Thinking principles:
- Decomposition: breaking a problem into smaller problems
- Generalization: seeing the bigger problem
- Abstraction: understanding significant vs. insignificant details
- Pattern Recognition: deciding which parts repeat
- Algorithm Design: a process to solve a problem

For more information on Computational Thinking, see the following resources:
https://computationalthinkingcourse.withgoogle.com
http://csta.acm.org/Curriculum/sub/CurrFiles/CompThinkingFlyer.pdf

Format:
The curriculum consists of six project-based coding lessons and two optional extension lessons.

In each lesson, students will explore the five fundamental computing concepts described above
in the process of building a fun game (like the popular Flappy Bird!). We provide an introduction
to each game, sample code, and suggested reflection questions. See Guide to the Lessons
(page 7) for more details.

We’ve designed this curriculum for grades 5-8, but it can easily be adapted to meet your
students’ age and experience level.

For younger students, go slower and skip the last part of each lesson. You may also want to
consider skipping lessons 5 or 6, which are the most advanced. For older students, encourage
exploration and iteration beyond the product completed in the lesson’s sample code.

Each lesson is designed to take 45 minutes of code-along instruction. If you have 15 or more
extra minutes, use it as free code time for slower students to catch up and faster students to
challenge themselves to embellish their programs. Suggestions for further work are given
under the Differentiation section of each lesson.

We hope that you have fun, and look forward to seeing what your students create.

<3,
Dr. Em + the Hopscotch Team

September 2015

OVERVIEW 03

THE TOOL
The activities in this
curriculum require the latest
version of Hopscotch on an
iPad or iPad mini. You can
download Hopscotch for
free directly from the App
Store using this link: http://
hop.sc/get_hopscotch

Note: We’re continually
improving Hopscotch. Make
sure your version of
Hopscotch is fully up to
date, or you won’t have
access to all the code blocks
required to make these
games!

VIDEOS
There are video tutorials for
Lessons 1-6. You can absolutely
teach this curriculum without
them; they are supplementary
(though quite fun, if we do say
so ourselves :p). They are
available on YouTube:
http://hop.sc/hopscotchvideos

You can use them in a few ways:

- Show the whole video to the
class, and after, lead them
through the steps to create their
games, taking suggestions from
the students for what to do next
and how to do it.

- Watch the video at home
ahead of time to get an idea of a
way to lead the class.

- Show the video to the class
and have them follow along
programming on their own
devices, pausing frequently to
catch up and discuss the code.

- Have each student self-pace
through the video on their own
device, with headphones,
and code along in their own
time. Some students may
choose to watch the whole way
through once, then code along
on the second viewing. (Requires
robust internet)

MATERIALS 04

EMOJIS
We highly recommend
using emojis. They are
fun, funny, and vastly
expand the possiblities of
what you can create. You
can download the emoji
keyboard from the
Settings app on your
iPad.

You can use any emoji in
your project by adding a
text object instead of a
character. Then tap the
smiley or globe in your
keyboard to switch to the
emoji menu and you can
choose what you want
from there.

MATERIALS
You don’t need much to teach this curriculum. The most important things to bring to the table
are creativity, curiosity, and flexibility. Aside from that, the following resources are all you need:

http://hop.sc/get_hopscotch
http://hop.sc/get_hopscotch
http://hop.sc/hopscotchvideos

CORE CODING CONCEPTS
In this curriculum, each lesson will sequentially explore the following concepts, each of which is
fundamental to computer science. Mastery of these ideas will enable students to independently
explore more complex programming, including other programming languages. We note what
concepts are covered in each section of the lessons with abbreviations.

At the beginning of each sub-lesson, we note which concepts it will cover with the following
abbreviations:

Sequence (S) - The order in which instructions are given to the computer

Event (E) - A trigger that a computer recognizes and that causes it to do something

Loop (L) - Code that repeats

Value/Variable (V) - A holder for a number

Conditional (C) - Statements of the form “IF (something is true) THEN (do an action)”.

CORE CODING CONCEPTS 05

STANDARDS
The Hopscotch Curriculum is aligned with both the Common Core Standards for Mathematical
Practice and the Next Generation Science Standards for Engineering Practices. They are listed
below, and referred to throughout the activities where relevant.

The skill of computer programming itself is deeply rooted in these practices, independent of the
content of the program being written. Depending on what app or game a student is making,
other content standards may also apply, such as understanding negative numbers, or use of the
coordinate plane.

Completion of all eight lessons fulfills all standards.

Common Core Standards for Mathematical Practice
http://www.corestandards.org/Math/Practice/
CCSS.MATH.PRACTICE.MP1 Make sense of problems and persevere in solving them
CCSS.MATH.PRACTICE.MP2 Reason abstractly and quantitatively
CCSS.MATH.PRACTICE.MP3 Construct viable arguments and critique the reasoning of others
CCSS.MATH.PRACTICE.MP4 Model with mathematics
CCSS.MATH.PRACTICE.MP5 Use appropriate tools strategically
CCSS.MATH.PRACTICE.MP6 Attend to precision
CCSS.MATH.PRACTICE.MP7 Look for and make use of structure
CCSS.MATH.PRACTICE.MP8 Look for and express regularity in repeated reasoning

Next Generation Science Standards for Engineering Practices
http://www.nextgenscience.org/sites/ngss/files/Appendix%20F%20%20Science%20and
%20Engineering%20Practices%20in%20the%20NGSS%20-%20FINAL%20060513.pdf
Practice 1 Defining problems
Practice 2 Developing and using models
Practice 3 Planning and carrying out investigations
Practice 4 Analyzing and interpreting data
Practice 5 Using mathematics and computational thinking
Practice 6 Constructing explanations and designing solutions
Practice 7 Engaging in argument from evidence
Practice 8 Obtaining, evaluating, and communicating information

Computer Science Teachers Association K-12 Computer Science Standards
http://csta.acm.org/Curriculum/sub/CurrFiles/CSTA_K-12_CSS.pdf

http://csta.acm.org/Curriculum/sub/CurrFiles/
CSTA_Standards_Mapped_to_CC_Math_Practice_StandardsNew.pdf

STANDARDS 06

http://www.corestandards.org/Math/Practice/
http://www.nextgenscience.org/sites/ngss/files/Appendix%20F%20%20Science%20and%20Engineering%20Practices%20in%20the%20NGSS%20-%20FINAL%20060513.pdf
http://www.nextgenscience.org/sites/ngss/files/Appendix%20F%20%20Science%20and%20Engineering%20Practices%20in%20the%20NGSS%20-%20FINAL%20060513.pdf
http://csta.acm.org/Curriculum/sub/CurrFiles/CSTA_K-12_CSS.pdf
http://csta.acm.org/Curriculum/sub/CurrFiles/CSTA_Standards_Mapped_to_CC_Math_Practice_StandardsNew.pdf
http://csta.acm.org/Curriculum/sub/CurrFiles/CSTA_Standards_Mapped_to_CC_Math_Practice_StandardsNew.pdf

GUIDE TO THE LESSONS
This curriculum was developed under the Understanding by Design Framework (Wiggins &
McTighe 2005), also known as Backward Design. Each lesson was designed to teach one Big
Idea as expressed by an explanatory sentence and a short slogan that is easy for students
remember and teachers to evaluate. We have designed six projects that together comprise a
survey course of programming fundamentals with an emphasis on transfer goals (skills), and two
supplementary lessons that facilitate further synthesis and communication. In addition to
teaching computing, this curriculum emphasizes exploratory learning and creative play. And fun.
Making something you actually want to use is just as important as learning the vocabulary.

1. Crossy Road
A simple game that introduces events, sequences, and loops, through helping a character
navigate across a busy street.
Big Idea: If you can code, you can make things that you like and use, and that may not have
existed before. Coding is a superpower!

2. Geometry Dash
A single-button jumping game that focuses on drawing and animation, and increasing the
complexity of loops and sequences, including concurrency, so that debugging is required.
Big Idea: Computers do only what you say, because they are not smart enough to figure out
what you mean. Be specific!

3. Which Emoji are You?
A customizable quiz that keeps track of your answers and computes a score or outcome using
variables and conditionals.
Big Idea: If you know how to use individual blocks like conditionals and variables, you can put
them together in powerful ways to build what you want. Little blocks build big programs!

4. Flappy Bird
An exercise in reverse engineering, where students are deeply familiar with the goal, and have
to work backward to make it happen. Introduces the concept of a physics engine.
Big Idea: Coding means telling computers what to do, in a language they can understand.
Computers speak numbers!

5. Subway Surfers
A complex action game that requires multiple components and design decisions, perfect for
introducing the paradigm of pair programming.
Big Idea: There is often more than one solution to a problem, and some solutions are better
than others. There may be another way!

6. Can you Escape?
An open-ended point-and-click adventure that connects the ideas of programming logic to real-
world logic.
Big Idea: The way to write good programs is to have ideas and make mistakes, over and over.
This process is called iteration. Stick to it!

GUIDE TO LESSONS 07

GUIDE TO THE LESSONS
7. Game Design Workshop (Optional)
An opportunity to refine one of the games in lessons 1-6, or start over from scratch with an
original idea. Watch Dr. Em’s advice on making games at http://hop.sc/1MwRIID

8. Game Showcase (Optional)
Share your games in a showcase with others, make a webpage or ad for your game, or write a
review of someone else’s game. An opportunity to practice sharing and attribution,
communication and using appropriate vocabulary, and evaluating the work of others.

The following describes and depicts the format of the lessons and how you might use them in
your classroom.

GUIDE TO LESSONS 08

TEACHER BRIEF
At the the start of every lesson, there is a Teacher Brief that offers a very high-level summary

of the game students will build, goals of the lesson, and concepts covered. Within each

lesson there are several mini-lessons that break down the problem of building the complete

game into discrete stages.

LESSON
0. Discussion pre-lesson
The first mini-lesson offers prompts for you to set the stage before students begin coding,

including discussing the game and the core coding concepts introduced in the lesson. We

also recommend showing the students a completed version of the game during this time (or,

even better, having them play it!).

1. Mini-lesson overview
Subsequent mini-lessons start with an overview of the game development task to be

completed. In this discussion, we define any core coding concepts or vocabulary that are

introduced in the mini-lesson and also offer suggestions of ways you can teach them to your

class. We recommend that you use the start of each mini-lesson as a way to bring the class

back together for instruction between coding sessions.

1.1 Discussion
As students start each stage of building their games, have them discuss the problem

they’re solving as a class (e.g., “In this stage, we need to add buttons that will let the

http://hop.sc/1MwRIID

GUIDE TO LESSONS 09

LESSON
player control the character’s movement”). You can ask students to consider potential

solutions as a class, in small groups, or on their own. Pseudocoding, or writing out the

code on the board or on paper, can be a helpful part of this discussion. Share out

potential student solutions and evaluate them as a class. As appropriate, guide them

towards a solution.

1.2 Implementation
After a discussion of what needs to be built and, if desired, how it might be coded,

students can start coding. Depending on how many iPads you have, you can have

students work independently or in pairs (see Page 60 for a discussion of pair

programming and why we love it). Students should get into the habit of testing their

code frequently by running (playing) it. We recommend that they run their code at

every stage of the mini-lesson. It is much easier to find and solve mistakes when

you’re constantly testing.

1.3 Using our screenshots
We demonstrate how each task can be implemented in Hopscotch with screenshots of

sample code. The code we suggest usually is only one way to build the needed feature;

there are often other ways that students can accomplish their goals.

Where appropriate, there are notes that describe the screenshot or functionality

depicted.

1.4 Videos
There is a video that accompanies students through the process of making each game.

You can use the videos in several ways: as the primary method of instruction by showing

them to the class, as a supplement to your instruction, or just as a means to get

prepared before teaching. Videos are linked in the materials section of each lesson.

GUIDE TO LESSONS 10

DIFFERENTIATION

REFLECTION

(15 minutes, optional)
The format of how you teach each lesson will ultimately be determined by the composition of

your class; depending on your students’ ages and experience levels, you might want to spend

more or less time in discussion, pair-programming, or working independently.

For example, with older or more advanced students, you might always give them an

opportunity to code their solutions to the problem on their own or in pairs. For younger or less

experienced students, you might always want to give step-by-step directions. You can also give

students more freedom as the lesson goes on, or conversely, bring students together to solve

harder problems.

(15 minutes, optional)
At the end of the lesson, there are suggestions of ways to make the lesson easier or harder, as

well as reflection questions.

LESSON 1
CROSSY ROAD

A simple game that touches on each of the core
coding concepts and allows students to become

familiar with using Hopscotch to build apps and share
with others.

TIME

BIG IDEA

SKILL FOCUS

KEY VOCABULARY

TRANSFER GOALS

MATERIALS

45 minutes, or 60 if you include
15 minutes of free code time

If you can code, you can make things
that you like and use, and that may not
have existed before. Coding is a
superpower!

• Using Hopscotch
• CCSS.MATH.PRACTICE.MP5 Use

appropriate tools strategically.

Event: When something happens
Sequence: A list of instructions, in order
Loop: Code that repeats
Random: The lack of a pattern
Range: The lowest and highest numbers that
Random can choose from

1. Students will understand that coding
means telling computers what to do, and
can think of some things that are made
with code. (Apps, car software, medical
equipment)

2. Students will be familiar with how to use
the Hopscotch app to create projects,
add objects, and write and edit rules.

3. Students will be able to name two
Hopscotch Events and understand that
an Event is “when something happens”.

4. Students will understand that a loop is
code that repeats, and be able to see
loops in their daily life.

– 1 iPad per student, or 1 iPad per 2 students,
for pair programming
– Video available on YouTube:
http://hop.sc/crossyroadvideo
– Complete project available:
http://hop.sc/crossyroadproject

LESSON 1 – CROSSY ROAD 12

http://hop.sc/crossyroadvideo
http://hop.sc/crossyroadproject

TEACHER BRIEF

This first lesson prioritizes familiarizing students with Hopscotch as a tool and the exciting
idea that they can control their computer. Students will understand what it takes to make a
video game, see the results of their work quickly, and feel like a programmer.

We recommend starting with a short discussion of what coding means and an exploration of
some of the things we’re going to make over the course this curriculum. If you have a
projector, you can show the students examples of some of the finished games. In this
lessons, students will build their own version of the popular Crossy Road game in which a
character dodges obstacles.

You may want to break this lesson up over two days, because while making this first game,
you will be introducing three core coding concepts and will want to spend sufficient time in
discussion of these ideas. These concepts are Events, Sequences, and Loops.

Don’t worry about all your students completely grasping these ideas the first time; ideas will
be reinforced in subsequent lessons.

If you choose to spend two days on this lesson, we recommend ending the first lesson after
adding a car obstacle, but before discussing randomness.

LESSON 1 – CROSSY ROAD 13

LESSON
0. Discussion (5 minutes)
The first and most important lesson of computer science is that computers do what they are
told, and only what they are told, in the order they are told to do it.

If you fully understand this concept and begin to think of everyday processes (making a
sandwich, getting to school) as a set of instructions, you will begin to think like a programmer
without trying very hard! A programmer is a person who codes, or writes computer
programs. A program is a set of instructions a computer can understand. We refer to these
instructions as a sequence. This term also refers to the idea that computers must follow the
instructions in the order, or in the “sequence” in which they’re given.

Ask your students to name some programs they use. Consider all their games and apps, but
also the software a DJ uses to mix tracks, the database your doctor uses to keep track of your
health, and the video games you play after school. All are programs and all were created by
programmers.

How many times a day do you interact with computers? Are there computers in surprising
places? How about a car? How about a phone? If you can control these computers and write
programs for them, you can make things that millions of people use every day!

1. Using Hopscotch (5 minutes)
First, get your students acquainted with Hopscotch.

1.1 Finding the Hopscotch app on your iPad
1.2 Signing into your account (students may need to create accounts)
1.3 Making a new project: Tap on the highlighted + on the bottom of the screen

0. Discussion (5 minutes)
The first and most important lesson of computer science is that computers do what they are
told, and only what they are told, in the order they are told to do it.

If you fully understand this concept and begin to think of everyday processes (making a
sandwich, getting to school) as a set of instructions, you will begin to think like a programmer
without trying very hard! A programmer is a person who codes, or writes computer
programs. A program is a set of instructions a computer can understand. We refer to these
instructions as a sequence. This term also refers to the idea that computers must follow the
instructions in the order, or in the “sequence” in which they’re given.

Ask your students to name some programs they use. Consider all their games and apps, but
also the software a DJ uses to mix tracks, the database your doctor uses to keep track of your
health, and the video games you play after school. All are programs and all were created by
programmers.

How many times a day do you interact with computers? Are there computers in surprising
places? How about a car? How about a phone? If you can control these computers and write
programs for them, you can make things that millions of people use every day!

1. Using Hopscotch (5 minutes)
First, get your students acquainted with Hopscotch.

1.1 Finding the Hopscotch app on your iPad
1.2 Signing into your account (students may need to create accounts)
1.3 Making a new project: Tap on the highlighted + on the bottom of the screen

LESSON 1 – CROSSY ROAD 14

LESSON
1.4 Choose Blank Project

2. Control Pad (E) (10 minutes)
The point of Crossy Road is to navigate a character across a field filled with obstacles (in this
case, cars!). The player will use control buttons to direct their character. This control pad is
one of the most universally recognizable video game elements.

One of the most important lessons of this activity is learning that the programmer must not
only put together all the components of the game (buttons, background, character), but also
explicitly tell the computer how they should work. For this, we need to create a rule, or code
that tells the computer what to do and when to do it. A rule has two components: an event
and commands (or action).

An event is a trigger that the computer recognizes and causes it to do some action. In
Hopscotch, all events start with the word “When” and are the first thing you choose when
you write a rule. Think of it as completing a “WHEN….., THEN…..” sentence.

Events are deeply important for computer engineers because they tell the computer when it
should do something. When you touch the phone icon on your home screen, then your
phone brings up the interface to make calls. When an Angry Bird hits a block, then the block
falls down.

Discuss some events (triggers) that happen in the classroom. Identify the trigger and resulting
action: When I raise my hand (trigger), then stop talking (action), when the bell rings (trigger),
then put down your pencil and turn in your test (action).

1.4 Choose Blank Project

2. Control Pad (E) (10 minutes)
The point of Crossy Road is to navigate a character across a field filled with obstacles (in this
case, cars!). The player will use control buttons to direct their character. This control pad is
one of the most universally recognizable video game elements.

One of the most important lessons of this activity is learning that the programmer must not
only put together all the components of the game (buttons, background, character), but also
explicitly tell the computer how they should work. For this, we need to create a rule, or code
that tells the computer what to do and when to do it. A rule has two components: an event
and commands (or action).

An event is a trigger that the computer recognizes and causes it to do some action. In
Hopscotch, all events start with the word “When” and are the first thing you choose when
you write a rule. Think of it as completing a “WHEN….., THEN…..” sentence.

Events are deeply important for computer engineers because they tell the computer when it
should do something. When you touch the phone icon on your home screen, then your
phone brings up the interface to make calls. When an Angry Bird hits a block, then the block
falls down.

Discuss some events (triggers) that happen in the classroom. Identify the trigger and resulting
action: When I raise my hand (trigger), then stop talking (action), when the bell rings (trigger),
then put down your pencil and turn in your test (action).

LESSON 1 – CROSSY ROAD 15

LESSON
After a general discussion of rules and events, you can transition to talking about programming
Crossy Road.

In Crossy Road, when the up button is tapped (trigger), then we want the hero to move up
(action). Pose this challenge to your students and as a class discuss the steps the computer must
take it complete it. Once the class agrees on what should happen, you can encourage them to
begin working on their own control pads. You can have them do this as a class in several small
steps, in pairs, or on their own.

Students should add the buttons that will be used as a control pad (right, left, and up) and a
protagonist or “hero” that the buttons will move around the screen. In Hopscotch, we program
objects or characters. They can be found by tapping on the “+” button in the upper right corner
of the screen. Buttons can be implemented by using a text object and then typing in a block
from the emoji keyboard.

For each button they want to include in the game, they will need to add a rule associated with
it. They can do this by tapping the character that will be affected by the buttons (the hero) and
giving it new rules. Encourage students to explore the events (When) menu in Hopscotch by
tapping their hero and then “Add a new rule”. Press more to get more events.

Challenge students to complete the code for the other two buttons in pairs or small groups. Ask
them to consider: What code will they need to add to create a button that moves the character
right when the right arrow is tapped and one that moves the character left when the left button
is tapped? To which character should these rules be added? (The hero)

The following is sample code.

2.1 Add hero object and place at bottom of screen

LESSON 1 – CROSSY ROAD 16

You can also choose an emoji as
your hero by selecting a text
object and then choosing from
the emoji keyboard.

LESSON
2.2 Add 3x control buttons (up, right, and left) that the player will use to move
their character

2.3 Add rule to move the hero forward

2.2 Add 3x control buttons (up, right, and left) that the player will use to move
their character

2.3 Add rule to move the hero forward

Review the Coordinate Plane.
In Hopscotch, (0,0) is at the
bottom left of your iPad screen,
so the whole screen is in
Quadrant I. Moving up is
changing the Y position by a
positive amount.

LESSON 1 – CROSSY ROAD 17

Use three different text objects
to create the buttons. You can
find the arrow buttons in your
emoji keyboard. If you don’t
have emojis, you can enable
them via your iPad settings.

LESSON
2.4 Complete the buttons to move the hero right and left

3. Like a Boss (LS) (10 minutes)

Once the students have their hero working, the next step is to add some drama to game by
introducing a challenge—cars that drive back and forth across the screen indefinitely. These
cars will be controlled by the computer (in game design, we call these kinds of automated
characters bosses or non-player characters).

This is a good time to discuss sequence and loops.

Sequence is the order in which instructions are given to the computer. The idea of putting
instructions in the correct sequence seems obvious and basic, but it’s a vital concept in
computer programming.

You can reference a real-life example: making sandwiches for their friends. Ask the class what
process they would need to employ in order to make and wrap 10 tuna sandwiches. Does it
matter if the process happens in same order for each sandwich? What if they added mayo
after putting canned tuna on bread? Or what if you put the bread in the bag before opening
the tuna? Silly, but order matters.

Computers have a finite set of kinds of tasks they can accomplish. But when these tasks are
combined properly, amazing things can be built. In addition to running instructions
sequentially, computers are very good at repeating sets of instructions. In computer science
we call this a “loop”, or code that repeats.

Consider using a loop to repeat the sandwich making process: For the number of sandwiches
I need: open the tuna, add mayo, stir, put on bread, put in bag.

As a class, discuss the behavior of these cars and together make a list of the steps they take.
Ask students to consider the difference between using “Repeat 10 Times” and “Repeat
Forever”. Which is appropriate for the sandwich? Which is appropriate for the car’s
movement? Also, consider what happens if instructions are out of order.

2.4 Complete the buttons to move the hero right and left

3. Like a Boss (LS) (10 minutes)

Once the students have their hero working, the next step is to add some drama to game by
introducing a challenge—cars that drive back and forth across the screen indefinitely. These
cars will be controlled by the computer (in game design, we call these kinds of automated
characters bosses or non-player characters).

This is a good time to discuss sequence and loops.

Sequence is the order in which instructions are given to the computer. The idea of putting
instructions in the correct sequence seems obvious and basic, but it’s a vital concept in
computer programming.

You can reference a real-life example: making sandwiches for their friends. Ask the class what
process they would need to employ in order to make and wrap 10 tuna sandwiches. Does it
matter if the process happens in same order for each sandwich? What if they added mayo
after putting canned tuna on bread? Or what if you put the bread in the bag before opening
the tuna? Silly, but order matters.

Computers have a finite set of kinds of tasks they can accomplish. But when these tasks are
combined properly, amazing things can be built. In addition to running instructions
sequentially, computers are very good at repeating sets of instructions. In computer science
we call this a “loop”, or code that repeats.

Consider using a loop to repeat the sandwich making process: For the number of sandwiches
I need: open the tuna, add mayo, stir, put on bread, put in bag.

As a class, discuss the behavior of these cars and together make a list of the steps they take.
Ask students to consider the difference between using “Repeat 10 Times” and “Repeat
Forever”. Which is appropriate for the sandwich? Which is appropriate for the car’s
movement? Also, consider what happens if instructions are out of order.

LESSON 1 – CROSSY ROAD 18

Moving left is changing the X
position by a negative amount,
and moving right is changing
the X position by a positive
amount.

LESSON
When students have a hypothesis about how the cars should move, they can begin coding.

3.1 Add car emoji
3.2 Add new rule to car: Make car move back and forth across the screen

(If you decide to break this lesson into two sessions, this would be a good place to stop.)

4. Randomness (5 minutes)
We can make our game more interesting by randomizing the speed of the cars. Randomness
is a lack of pattern or predictability in events.

The concept of randomness is very important in computer programming because the most
useful computer programs must be able to solve generalized (rather than specific) problems.
For instance, it is much more useful to write a program that could find the factorial of any
random number than a program that could only find the factorial of, say, the number seven.
Having one generalized solution that can be used for a variety of specific inputs is at the
heart of what makes computer programs powerful. And randomness can be used to test how
robust that program is.

Randomness can also be used to make computer programs better. The Roomba vacuum can
accomplish its task of cleaning any room anywhere by moving forward until it hits a wall, and
then turning in a random direction. Imagine if the people who programmed the Roomba had
to write specific directions for it to clean a square room, a rectangular room with two sofas in
it, a long and narrow room…you get the idea. It might be more efficient in those specific
instances, but they would never be able to account for all the potential rooms the Roomba
might have to clean.

Randomness is very useful for programming computer games, because it drives the luck
aspects of games. For instance, how often or when a block in Tetris appears is driven by
randomness.

When students have a hypothesis about how the cars should move, they can begin coding.

3.1 Add car emoji
3.2 Add new rule to car: Make car move back and forth across the screen

(If you decide to break this lesson into two sessions, this would be a good place to stop.)

4. Randomness (5 minutes)
We can make our game more interesting by randomizing the speed of the cars. Randomness
is a lack of pattern or predictability in events.

The concept of randomness is very important in computer programming because the most
useful computer programs must be able to solve generalized (rather than specific) problems.
For instance, it is much more useful to write a program that could find the factorial of any
random number than a program that could only find the factorial of, say, the number seven.
Having one generalized solution that can be used for a variety of specific inputs is at the
heart of what makes computer programs powerful. And randomness can be used to test how
robust that program is.

Randomness can also be used to make computer programs better. The Roomba vacuum can
accomplish its task of cleaning any room anywhere by moving forward until it hits a wall, and
then turning in a random direction. Imagine if the people who programmed the Roomba had
to write specific directions for it to clean a square room, a rectangular room with two sofas in
it, a long and narrow room…you get the idea. It might be more efficient in those specific
instances, but they would never be able to account for all the potential rooms the Roomba
might have to clean.

Randomness is very useful for programming computer games, because it drives the luck
aspects of games. For instance, how often or when a block in Tetris appears is driven by
randomness.

LESSON 1 – CROSSY ROAD 19

LESSON
Randomness depends on giving the computer options to choose from, or a range. You can
discuss a real-life example of range. Ask your students to “Pick a number between 1 and 10”.
Imagine if you had just told them that you are thinking of a number and asked them to guess
it. They would have been guessing for days. Instead, you gave them a range (“1 to 10”), or
the lowest and highest number for Random to choose between. We will use randomness to
make our games more fun and challenging.

Ask students to consider what would happen if the cars in the game all drove at the same
speed. Would the game be fun? What would happen if you randomly set the speed of the
cars? Would that make it more fun? (We think so!)

To set the car’s speed, you need to determine its range. Ask your students to play around
with the range and see what happens. What if you try (1,10)? What if you try (100,1000)? The
default speed in Hopscotch is 400, so a range of (200,600) is pretty good.

4.1 Edit car’s rule: Set the speed to random each time

5. Collisions (E) (10 minutes)
The last obligatory element in Crossy Road is to establish collisions and then add more cars.
A collision is a type of event, and in Hopscotch, it is represented as “When __ bumps __”.
When the hero bumps into a car, the hero should disappear.

To finish the game, we need to add at least one other car to make it fun.

Students will need to add the collision rule to their hero, and then add and program more
cars. Allow a set amount of time for this activity. In that time, some students will be able to
add multiple cars and program their movement and collisions (using the same code as for the
first car). Others will achieve only one. As a class, discuss collisions and, depending on the
age of your students, see if they can implement the code on their own. Circulate and help
the students who are struggling. This process is repetitive, but offers good practice and gives

Randomness depends on giving the computer options to choose from, or a range. You can
discuss a real-life example of range. Ask your students to “Pick a number between 1 and 10”.
Imagine if you had just told them that you are thinking of a number and asked them to guess
it. They would have been guessing for days. Instead, you gave them a range (“1 to 10”), or
the lowest and highest number for Random to choose between. We will use randomness to
make our games more fun and challenging.

Ask students to consider what would happen if the cars in the game all drove at the same
speed. Would the game be fun? What would happen if you randomly set the speed of the
cars? Would that make it more fun? (We think so!)

To set the car’s speed, you need to determine its range. Ask your students to play around
with the range and see what happens. What if you try (1,10)? What if you try (100,1000)? The
default speed in Hopscotch is 400, so a range of (200,600) is pretty good.

4.1 Edit car’s rule: Set the speed to random each time

5. Collisions (E) (10 minutes)
The last obligatory element in Crossy Road is to establish collisions and then add more cars.
A collision is a type of event, and in Hopscotch, it is represented as “When __ bumps __”.
When the hero bumps into a car, the hero should disappear.

To finish the game, we need to add at least one other car to make it fun.

Students will need to add the collision rule to their hero, and then add and program more
cars. Allow a set amount of time for this activity. In that time, some students will be able to
add multiple cars and program their movement and collisions (using the same code as for the
first car). Others will achieve only one. As a class, discuss collisions and, depending on the
age of your students, see if they can implement the code on their own. Circulate and help
the students who are struggling. This process is repetitive, but offers good practice and gives

LESSON 1 – CROSSY ROAD 20

students a chance to see how one of the most important programming concepts (writing
functions) is useful.

Use the refresh button to start the game over.

5.1 Add rule to hero: Disappear when it collides with the car

5.2 Add and program more cars with the rule established above in 4.1
5.3 Add a collision rule for each new car to the hero

5.4 Test program, adjust position of cars

6. Victory (optional) (E) (5 minutes)
 It’s not a game if you can’t win! Add a goal destination, or target, to give your hero somewhere
to go. When hero bumps the target, the game should say, "You win." We can program a text
object to display this message when triggered by the collision.

6.1 Add a target object (corn)
6.2 Add a win message object, and don’t set the text

7. Publishing (5 minutes)
Share what you made with the world! Ask students to publish their programs, giving the game a
descriptive name that they’ll remember. See if they can find their own and each other’s projects in
the community.

7.1 Publish your program

students a chance to see how one of the most important programming concepts (writing
functions) is useful.

Use the refresh button to start the game over.

5.1 Add rule to hero: Disappear when it collides with the car

5.2 Add and program more cars with the rule established above in 4.1
5.3 Add a collision rule for each new car to the hero

5.4 Test program, adjust position of cars

6. Victory (optional) (E) (5 minutes)
 It’s not a game if you can’t win! Add a goal destination, or target, to give your hero somewhere
to go. When hero bumps the target, the game should say, "You win." We can program a text
object to display this message when triggered by the collision.

6.1 Add a target object (corn)
6.2 Add a win message object, and don’t set the text

7. Publishing (5 minutes)
Share what you made with the world! Ask students to publish their programs, giving the game a
descriptive name that they’ll remember. See if they can find their own and each other’s projects in
the community.

7.1 Publish your program

LESSON 1 – CROSSY ROAD 21

LESSON

When you add a text object, if
you tap “Cancel” instead of
writing a name for your new
text, it starts out invisible.

If students add multiple of the
same object, the objects will
automatically be assigned a
number. Pay attention to make
sure you’re assigning the right
rule to the right object. (e.g.
when Car 2 bumps chicken, Car
2 should disappear).

(15 minutes, optional)

(5 minutes, optional)

DIFFERENTIATION

REFLECTION

LESSON 1 – CROSSY ROAD 22

• Put in lots of cars
• Draw lanes
• Set speed
• Customize control pad with better emoji, different sizes, or by moving a different amount
• Animate the “You Win” text and give it a cool color

• What is coding? (telling computers what to do)
• What can you make with code? (apps, games, medical software)
• What is an event? (when to do something)
• Can you name some events, in Hopscotch or in real life? (“When the play button is

tapped”, “When _ bumps _”)
• What is a collision? (when two things bump into each other)
• What do you think about coding? Is it fun? Hard? Rewarding?

LESSON 2
GEOMETRY DASH

A single-button jumper that includes moving
obstacles, drawing a background, and animation

TIME

BIG IDEA

SKILL FOCUS

KEY VOCABULARY

TRANSFER GOALS

MATERIALS

Bug: a mistake in your code
Debugging: finding mistakes and fixing them
Concurrency: two things that happen at the
same time
Random: a surprise
Range: the highest and lowest number for
random to choose between

LESSON 2 – GEOMETRY DASH 24

45-60 minutes (+15 minutes of
optional, free code time)

Computers can only do what you SAY
because they are not smart enough to
figure out what you MEAN. Be specific!

– 1 iPad per student, or 1 iPad per 2
students, for pair programming
– Video available on YouTube:
http://hop.sc/geometrydashvideo
– Complete project available:
http://hop.sc/geometrydashproject

– Debugging
– Make sense of problems and persevere in
solving (CCSS.MATH.PRACTICE.MP1)
– Look for and make use of structure
(CCSS.MATH.PRACTICE.MP7)
– Designing solutions (NGSS Practice 6)

1. Students will become familiar with editing
rules
2. Students will practice testing their programs
to find bugs.
3. Students will practice fixing bugs and
verifying that they are fixed.
4. Students will abstract a problem to design a
solution.
5. Students will develop confidence and
persistence.

http://hop.sc/geometrydashvideo
http://hop.sc/geometrydashproject

TEACHER BRIEF

As your students learned in Lesson 1, computers are really good at carrying out orders
quickly and accurately. They are not good at thinking about what things mean or making
decisions for themselves. That means that we have to be very careful when we are giving
computers instructions, because they will do exactly what we tell them to do (even if it makes
no sense). An inevitable part of programming is introducing mistakes, or bugs, in your code
and then having to fix them (debugging).

This second lesson focuses on debugging as a rewarding exercise, and teaches kids to
become comfortable making and working through mistakes. Students will get used to testing
their programs and editing rules, which will occupy lots of their time for the next four weeks.
Finding bugs can be frustrating for even the most seasoned engineer, but the process is
ultimately very rewarding and a unique opportunity to learn and practice perseverance—one
of the most transferable skills gained through coding. Celebrate bug fixes!

Debugging is made easier by making incremental changes to your code—write one thing,
test it, and the write the next. If you code lots of things at once and then figure out it’s not
working, it’s harder to track down which of your changes caused a mistake.

LESSON 2 – GEOMETRY DASH 25

LESSON
0. Discussion: Debugging
In this lesson, students will create their own version of Geometry Dash. While building the
game, they will inevitably make mistakes and create bugs. This lesson is equally as much
about the process of finding and fixing bugs as it is about making a fun game. You can ask
your students to think about this task and imagine themselves as bug hunters.

As programmers, we frequently tell our computers to do something other than what we
intended. We call the resulting mistakes bugs, or errors in a program introduced by the
person writing it. The process of finding and fixing your mistakes is called debugging. One
of the most important lessons in coding is remembering that your bugs are not caused by the
computer—they’re caused by the programmer. And it’s totally expected that all
programmers will write bugs at different points in the development process.

When real-world programmers are in the process of writing code, the rule of thumb is that it
takes 10% of their time to write the first draft, and the other 90% of their time to debug it.
There are engineers whose whole job is to debug other people’s code!

It may be worthwhile at this point to discuss debugging with your class. What are some
useful strategies to consider while debugging? The following are just some examples:

What should bug hunters look for? Why is this an important job? When else in our lives have
we had to hunt for and solve problems?

1. Control the hero (ES) (10 minutes)
In Geometry Dash, the player controls a little square that flips and jumps over obstacles.

Because the jumping and flipping animations happen at the same time, we say they are
concurrent. The way to program concurrence in Hopscotch is to make two rules with the
same event. That way, they are triggered at the same time.

0. Discussion: Debugging
In this lesson, students will create their own version of Geometry Dash. While building the
game, they will inevitably make mistakes and create bugs. This lesson is equally as much
about the process of finding and fixing bugs as it is about making a fun game. You can ask
your students to think about this task and imagine themselves as bug hunters.

As programmers, we frequently tell our computers to do something other than what we
intended. We call the resulting mistakes bugs, or errors in a program introduced by the
person writing it. The process of finding and fixing your mistakes is called debugging. One
of the most important lessons in coding is remembering that your bugs are not caused by the
computer—they’re caused by the programmer. And it’s totally expected that all
programmers will write bugs at different points in the development process.

When real-world programmers are in the process of writing code, the rule of thumb is that it
takes 10% of their time to write the first draft, and the other 90% of their time to debug it.
There are engineers whose whole job is to debug other people’s code!

It may be worthwhile at this point to discuss debugging with your class. What are some
useful strategies to consider while debugging? The following are just some examples:

What should bug hunters look for? Why is this an important job? When else in our lives have
we had to hunt for and solve problems?

1. Control the hero (ES) (10 minutes)
In Geometry Dash, the player controls a little square that flips and jumps over obstacles.

Because the jumping and flipping animations happen at the same time, we say they are
concurrent. The way to program concurrence in Hopscotch is to make two rules with the
same event. That way, they are triggered at the same time.

LESSON 2 – GEOMETRY DASH 26

• Say what you think your program is supposed to do, see what it actually does, and then
describe the difference in your own words.

• Look at your code for ambiguities, or places where your blocks don’t say exactly what
you want to happen, when you want it to happen.

• Make a checklist of common mistakes: Did you repeat forever? Are the numbers you
plugged in correct? Did you use the correct blocks for what you intended? Move
Forward vs Change X By? Set Speed vs Set Angle, etc. Does your rule belong to the
right object?

• Try to map out the logic of your project. Then see if you’ve written the right code to
create that logic.

• Take a break when you get overwhelmed. We often need distance to see what we’ve
done in its entirety.

LESSON
Get students to deconstruct the two steps of jumping (move up, then move down). Does this
up and down movement occur along the X or Y axis? Then, ask your students to add their
hero object (the square emoji) and tell it to turn and jump when they tap their iPad.

1.1 Add hero object (square emoji) and place it near the bottom left corner of
screen

1.2 Add rule to hero to make it bigger

1.3 Add rule to hero to jump

Get students to deconstruct the two steps of jumping (move up, then move down). Does this
up and down movement occur along the X or Y axis? Then, ask your students to add their
hero object (the square emoji) and tell it to turn and jump when they tap their iPad.

1.1 Add hero object (square emoji) and place it near the bottom left corner of
screen

1.2 Add rule to hero to make it bigger

1.3 Add rule to hero to jump

LESSON 2 – GEOMETRY DASH 27

If you choose a number other
than 200, all of the other
numbers we give will also have
to change. This is an
opportunity for debugging.

Make sure the emoji keyboard
is enabled, which you can do in
your iPad’s settings.

LESSON
1.4 Add a new rule to hero to turn while jumping

2. Background (S) [10 minutes]
Drawing the background is a skill that you can apply to any game. Because drawing is just
like any other code, you have to choose an object to be in charge of drawing. It is customary
to make this object invisible, so you don’t see the thing itself, only the picture it draws. For
this reason, it doesn’t really matter which object you choose.

In Hopscotch, we draw with a block called “Leave a Trail” that sets the color and width of the
line, then executes the code inside – typically “Move Forward” – as if the object were
dragging a marker behind it. It will make a dot if it just moves by 1. To color in the whole
screen, make a huge dot (width 3000). To make a thick line, you have to set the position to
where you want it to start, and then move along the desired path.

This is another opportunity for debugging. Have the students make a prediction about the
following questions and then test out changing their code. What happens… if you don’t put
anything inside the drawing block? …if you forget to set the width? …if you set the color to
white? …if you don’t set the position before you start?

Then, have students attempt drawing their background on their own. They can change the
artist’s speed to draw the background faster.

2.1 Add drawing object (choose anything)

1.4 Add a new rule to hero to turn while jumping

2. Background (S) [10 minutes]
Drawing the background is a skill that you can apply to any game. Because drawing is just
like any other code, you have to choose an object to be in charge of drawing. It is customary
to make this object invisible, so you don’t see the thing itself, only the picture it draws. For
this reason, it doesn’t really matter which object you choose.

In Hopscotch, we draw with a block called “Leave a Trail” that sets the color and width of the
line, then executes the code inside – typically “Move Forward” – as if the object were
dragging a marker behind it. It will make a dot if it just moves by 1. To color in the whole
screen, make a huge dot (width 3000). To make a thick line, you have to set the position to
where you want it to start, and then move along the desired path.

This is another opportunity for debugging. Have the students make a prediction about the
following questions and then test out changing their code. What happens… if you don’t put
anything inside the drawing block? …if you forget to set the width? …if you set the color to
white? …if you don’t set the position before you start?

Then, have students attempt drawing their background on their own. They can change the
artist’s speed to draw the background faster.

2.1 Add drawing object (choose anything)

LESSON 2 – GEOMETRY DASH 28

What would happen if you
picked a non-symmetrical hero?
How much would you have to
turn it so it landed on its feet?
What happens when you
choose +180 instead?

2.2 Add rule to drawing object

2.3 Edit drawing object’s rules to draw faster

3. Obstacles (LS) [10 minutes]
In games like Flappy Bird and Geometry Dash, it feels like the hero is moving forward
through a stationary world but actually, the hero is stationary and the world is moving
backward. Have you ever been sitting in a stationary car and another car next to you backs
up – doesn’t it feel, for just a moment, like you’re moving forward? In this game, the hero is
the car you’re in, and the obstacles are the things moving backwards.

Take some time to talk about the movement of the obstacles from edge of the screen across
to the other edge. See if you can come up with the sequence of obstacle’s movement rules
as a class.

LESSON

LESSON 2 – GEOMETRY DASH 29

The default speed is 400.
9999 is as high as you ever
need to go; that speed is
indistinguishable from
999999999...

Set the invisibility to 100 so you
can’t see the painter.

After students agree on the correct code, ask them to try implementing it. Then, bring the
class together again and decide as a class at what point the obstacle should be visible and
invisible. Discuss why this feels so much more natural. (It’s because our brains are good at
imagining that an object that moves out of our field of view is probably still in motion even
though we can’t see it.)

What if we want to make it look like there are many obstacles but only use one object? This is
another great design trick. See if your students can identify the technique to make this
possible – putting the code inside a loop.

Give the students a few minutes to play their game, and then bring the class together again.
Ask for suggestions to make the game more fun and challenging. Like with Crossy Road in
Lesson 1, it is boring (and easy!) because it’s the same every time! Games are challenging
(and fun!) when there is an element of unpredictability. If you make the obstacle wait for a
random amount of time in between passes, the game becomes more fun.

Debugging opportunity: What is the appropriate range for the random wait time? Try out
some different combinations until you settle on one you like.

3.1 Add emoji object for obstacle (triangle)

3.2 Add rule to obstacle to make it bigger

3.3 Edit obstacle’s rule to move it across the screen

LESSON

LESSON 2 – GEOMETRY DASH 30

3.4 Edit obstacle’s rule to make sequence repeat forever

3.5 Edit obstacle’s rule to wait random (100,1000)

4. Collisions (ES) [10 minutes]
As we learned in Lesson 1, when two objects bump into one another, it is called a collision. A
collision is a type of event, so we can decide what actions should happen when that event
occurs. In Geometry Dash, when the hero collides with an obstacle, the game is over.

To designate “game over,” upon a collision the hero will explode and then disappear. In
Hopscotch, when an object is invisible, it can no longer collide with anything, be tapped, or
swiped. Spend some time testing this sequence and getting the timing right, then publish!

4.1 Add new collision rule to hero

4.2 Publish your game

LESSON

LESSON 2 – GEOMETRY DASH 31

When moving code into the
repeat block, make sure to not
change the order. Students will
probably make a mistake here
—a good opportunity for
debugging!

If you cannot find the “bumps”
event, tap “more” in the event
menu. You can change the
object into an explosion, make
it spin around, or drop off the
screen like Mario. Turning
invisible is necessary, because it
stops the game from being
playable.

(15 minutes, optional)

(5 minutes, optional)

DIFFERENTIATION

REFLECTION

LESSON 2 – GEOMETRY DASH 32

• Draw a better background
• Make the background colors random
• Add more obstacles (two or three emoji in a row is a possibility, make movement into

an ability)
• Set the obstacle size to random each time; pick a good range!
• Print and laminate index cards with debugging strategies and have students check off

strategies as they go

• What are computers good at? What are they bad at?
• How does this compare to what humans are good and bad at?
• Is drawing with a computer easier or harder than drawing with pencil and paper? Why?

If it is harder, why do we still do it?

LESSON 3
WHICH EMOJI

ARE YOU?

A personalized quiz that keeps track of your
answers and calculates results.

TIME

BIG IDEA

SKILL FOCUS

KEY VOCABULARY

TRANSFER GOALS

MATERIALS

LESSON 3 – WHICH EMOJI ARE YOU? 34

45-60 minutes (+15 minutes of optional, free code
time)

If you know how to use individual blocks like
conditionals and variables, you can put them
together in powerful ways to make what you want.
Little blocks build big programs!

Value/Variable: A number that can change
Conditional: statement of the form “IF (something is
true) THEN (do an action)”

– 1 iPad per student, or 1 iPad per 2 students, for
pair programming
– Video available on YouTube:
http://hop.sc/emojiquizvideo
– Complete project available:
http://hop.sc/emojiquizproject

• Planning and Execution
• NGSS Practice 3 Planning and carrying out

investigations
• NGSS Practice 4 Analyzing and interpreting

data
• CCSS.MATH.PRACTICE.MP2 Reason

abstractly and quantitatively
• CCSS.MATH.PRACTICE.MP8 Look for and

express regularity in repeated reasoning

1. Students will understand that a conditional
checks if something is true and can identify
the use of conditionals in their lives.

2. Students will understand that a value or
variable is a holder for a number and can
identify the use of values in their lives.

3. Students will become comfortable with
keeping track of variables and doing
operations.

4. Students will make a plan and see it
through until the end.

5. Students will recognize patterns in their
code and apply them to new situations.

http://hop.sc/emojiquizvideo
http://hop.sc/emojiquizproject

TEACHER BRIEF
In this lesson, students will create a if-you-chose-mostly-A’s type quiz, like you find in the
back of a fashion magazine. In our example, it will help them answer an age-old question:
“Which emoji are you?” With a little adjustment, it could be made into a factual quiz that
checks the answers for correctness. It is very different from the last two games as it contains
only text objects and revolves around logic and order, rather than animation and collisions.
This lesson introduces two important computing concepts: values and conditional
statements.

In this lesson, the example quiz content is “Which emoji are you?” Students can stay close to
the example quiz by choosing different emojis and questions. This is also an opportunity to
tie-in other content they are learning.

LESSON 3 – WHICH EMOJI ARE YOU? 35

LESSON
0. Make a plan
The first step is to design the questions and answers for your quiz. Pass out copies of the
blank matrix below, or put it on the projector and have students create their own on paper.
Don’t worry too much about making them the best questions ever; this is just your first quiz!

Some ideas include: What job should you have? What fictional character are you most like?
What book should you read next? If time is limited, or if a student has a hard time coming up
with an idea, use the sample matrix below:

1. Setup and introduction to values (V)
Before coding, discuss how the quiz will work and the tools we will use to build it. The quiz
has three main functions: First, it keeps track of what question you’re on and advances the
question number when the player chooses an answer. Second, it keeps track of how many of
each answer you’ve chosen. Third, it compares the answers at the end to give the player a
result. We will use values to keep track of all this information.

Values, also known as variables, hold pieces of information. Values can be set, changed, or
checked. They can be used inside events and other blocks, and can stand in any place you
can use a number. What makes values so powerful is that you can actually change them
programmatically. For example, think of your score in a game like Angry Birds or the number
of unread emails in your inbox. Both of these numbers are actually values. As you score more
points in Angry Birds your score goes up; the value changes. As you read your email the
number of unread emails you have goes down. Values are used to represent some kind of
information.

In Hopscotch, the values tab is to the right of the calculator tab that pops up when it’s time
to input a number. In addition to the built-in values like “iPad’s width” or “Character’s x
position”, you can add new values to your project to keep track of other things like a score or
a state. It might be helpful to walk your students through the values menu and value blocks.

0. Make a plan
The first step is to design the questions and answers for your quiz. Pass out copies of the
blank matrix below, or put it on the projector and have students create their own on paper.
Don’t worry too much about making them the best questions ever; this is just your first quiz!

Some ideas include: What job should you have? What fictional character are you most like?
What book should you read next? If time is limited, or if a student has a hard time coming up
with an idea, use the sample matrix below:

1. Setup and introduction to values (V)
Before coding, discuss how the quiz will work and the tools we will use to build it. The quiz
has three main functions: First, it keeps track of what question you’re on and advances the
question number when the player chooses an answer. Second, it keeps track of how many of
each answer you’ve chosen. Third, it compares the answers at the end to give the player a
result. We will use values to keep track of all this information.

Values, also known as variables, hold pieces of information. Values can be set, changed, or
checked. They can be used inside events and other blocks, and can stand in any place you
can use a number. What makes values so powerful is that you can actually change them
programmatically. For example, think of your score in a game like Angry Birds or the number
of unread emails in your inbox. Both of these numbers are actually values. As you score more
points in Angry Birds your score goes up; the value changes. As you read your email the
number of unread emails you have goes down. Values are used to represent some kind of
information.

In Hopscotch, the values tab is to the right of the calculator tab that pops up when it’s time
to input a number. In addition to the built-in values like “iPad’s width” or “Character’s x
position”, you can add new values to your project to keep track of other things like a score or
a state. It might be helpful to walk your students through the values menu and value blocks.

LESSON 3 – WHICH EMOJI ARE YOU? 36

Yes!

Where do you like
to hang out?

What are you best
at?

Playing music Library No.

Park

Pool!

"

Telling jokes

Playing sports

Depends, do they
have ice cream?

Would you move to
Mars if you could?

☎ ️

Answer 3B

Question 2Question 1
Answer 1A Answer 2A Answer 3A

Answer 2B

Answer 2CResult C

Result B

Answer 1C

Answer 1B

Answer 3C

Question 3

Result A

LESSON
It is super important to name your values well! You’ll need to be able to tell them apart later
and remember what they’re for!

After discussing the concept of values with your students, you might want to go through a list
of objects that you will need and their respective initial rules (five text objects: a title, a
question, and three answers.) The title (or any object, really) should initialize a value that will
keep track of what question the player is on. In the example, we call it “Question Number”.
We create separate values that will keep track of each answer category. We initialize
“Question Number” to 1 and the three “Answer” values to 0.

1.1 Add text objects for the title, question, three answers (5 objects)

1.2 Add a new rule to the Title object: Initialize Question Number to 1

1.3 Edit the Title object’s rule: Initialize all three answer values to 0

It is super important to name your values well! You’ll need to be able to tell them apart later
and remember what they’re for!

After discussing the concept of values with your students, you might want to go through a list
of objects that you will need and their respective initial rules (five text objects: a title, a
question, and three answers.) The title (or any object, really) should initialize a value that will
keep track of what question the player is on. In the example, we call it “Question Number”.
We create separate values that will keep track of each answer category. We initialize
“Question Number” to 1 and the three “Answer” values to 0.

1.1 Add text objects for the title, question, three answers (5 objects)

1.2 Add a new rule to the Title object: Initialize Question Number to 1

1.3 Edit the Title object’s rule: Initialize all three answer values to 0

LESSON 3 – WHICH EMOJI ARE YOU? 37

When the values menu opens,
tap the grey arrow on the top to
go right to iPad’s values. Create
a new value with the button on
the bottom of the menu. Call it
“QuestionNumber”.

Create a new value for each
Answer (e.g. A Answers, B
Answers, C Answers.)

LESSON
2. Value Events (EV)
The four events at the very bottom of the Events menu deal with comparing values. They
track whether a value is equal, not equal, bigger than, or smaller than another value or
number. When you select the “_ equals _” event, the calculator menu opens. On the right of
“Calculator” are values.

The quiz should display the first question and its answers when the “Question Number”
value equals 1. The player chooses an answer and the game should keep track of how many
of each kind of answer is chosen. We do that by increasing the appropriate answer value
when each answer is tapped. For example, if an “A Answer” is chosen, the value “Answer A”
should increase. Show the students these new events, and then discuss the rules that they
will need to code before having them start programming. Make sure they choose the right
object-value combination!

2.1 Add a new rule to the question object

2.2 Add new rules to each of the answer objects

2.3 Add new rule to each of the answer objects: increment the right score when
tapped

2. Value Events (EV)
The four events at the very bottom of the Events menu deal with comparing values. They
track whether a value is equal, not equal, bigger than, or smaller than another value or
number. When you select the “_ equals _” event, the calculator menu opens. On the right of
“Calculator” are values.

The quiz should display the first question and its answers when the “Question Number”
value equals 1. The player chooses an answer and the game should keep track of how many
of each kind of answer is chosen. We do that by increasing the appropriate answer value
when each answer is tapped. For example, if an “A Answer” is chosen, the value “Answer A”
should increase. Show the students these new events, and then discuss the rules that they
will need to code before having them start programming. Make sure they choose the right
object-value combination!

2.1 Add a new rule to the question object

2.2 Add new rules to each of the answer objects

2.3 Add new rule to each of the answer objects: increment the right score when
tapped

Type the first question in the
“Set Text” window.

LESSON 3 – WHICH EMOJI ARE YOU? 38

Refer to your question matrix to
enter each answer in its
respective rule. We will do
questions 2 and 3 later.

LESSON
3. Show Values (LV)
It’s hard to know whether our values are working properly, so programmers design tests to
display them. In Hopscotch, you can do this by displaying the value on the screen. This is an
advanced debugging strategy, and the values should be deleted from finished version of the
project once you know everything works. Discuss this technique with students and see if they
can figure out how to display a value when their project is played.

We recommend using“Set Text” and putting the appropriate value inside a forever loop to
display it when the project is played. You should see the values change as the player
progresses through the quiz.

3.1 Add four new blank text objects. Place them next to the question and each of
the answers.

3.2 Add new rule to the question object

3.3 Add new rule to Answer A object

3.4 Add new rule to Answer B object

3. Show Values (LV)
It’s hard to know whether our values are working properly, so programmers design tests to
display them. In Hopscotch, you can do this by displaying the value on the screen. This is an
advanced debugging strategy, and the values should be deleted from finished version of the
project once you know everything works. Discuss this technique with students and see if they
can figure out how to display a value when their project is played.

We recommend using“Set Text” and putting the appropriate value inside a forever loop to
display it when the project is played. You should see the values change as the player
progresses through the quiz.

3.1 Add four new blank text objects. Place them next to the question and each of
the answers.

3.2 Add new rule to the question object

3.3 Add new rule to Answer A object

3.4 Add new rule to Answer B object

LESSON 3 – WHICH EMOJI ARE YOU? 39

LESSON
3.5 Add new rule to Answer C object

4. Next Question (EV)
The score for each of the answers is advancing as you tap them, but the question does not
change (neither does the “Question Number” value). Decide as a class, what event(s) should
trigger the quiz to move on to the next questions. If we make “Question Number” increase,
we also need to make the question (and answers) display the correct text for when the
“Question Number” value equals 2 or 3. How should this work?

Hint: You advance “Question Number” when any of the answers is tapped! We have already
made rules for this event, so we just need to add a block to increase the “Question Number”
value. You can do this step as a class and then together or in pairs test your programs to
make sure the “Question Number” is advancing. Allow your students to implement the
answer code in their own time and help their neighbors if they finish early.

4.1 Edit rules for all 3 answer objects to change “Question Number”

3.5 Add new rule to Answer C object

4. Next Question (EV)
The score for each of the answers is advancing as you tap them, but the question does not
change (neither does the “Question Number” value). Decide as a class, what event(s) should
trigger the quiz to move on to the next questions. If we make “Question Number” increase,
we also need to make the question (and answers) display the correct text for when the
“Question Number” value equals 2 or 3. How should this work?

Hint: You advance “Question Number” when any of the answers is tapped! We have already
made rules for this event, so we just need to add a block to increase the “Question Number”
value. You can do this step as a class and then together or in pairs test your programs to
make sure the “Question Number” is advancing. Allow your students to implement the
answer code in their own time and help their neighbors if they finish early.

4.1 Edit rules for all 3 answer objects to change “Question Number”

LESSON 3 – WHICH EMOJI ARE YOU? 40

Add the Increase Value block to
Answers B and C.

LESSON
4.2 Add new rule for Question object to display second question

4.3 Add new rule for Question object to display third question

4.4 Add new rule for each Answer object to display second and third answers

5. Results and introduction to Conditionals (VC)
Now all the questions are answered, we have to check our results! The correct result to show
is the one for which the “Answers value” is the greatest. We can use conditionals to
compare values.

Conditionals are statements of the form “IF (something is true) THEN (do an action)”. It
executes code only under the condition that you specify, like IF the score is greater than 10
or IF a character is invisible. We use conditionals in our lives all the time. Stoplights are a
great example of conditions: “If the light is green, then go.” They are also extremely
important in programming since computers need explicit directions.

There are two types of conditionals in Hopscotch: “Check Once If” and “Check If… Else”.

4.2 Add new rule for Question object to display second question

4.3 Add new rule for Question object to display third question

4.4 Add new rule for each Answer object to display second and third answers

5. Results and introduction to Conditionals (VC)
Now all the questions are answered, we have to check our results! The correct result to show
is the one for which the “Answers value” is the greatest. We can use conditionals to
compare values.

Conditionals are statements of the form “IF (something is true) THEN (do an action)”. It
executes code only under the condition that you specify, like IF the score is greater than 10
or IF a character is invisible. We use conditionals in our lives all the time. Stoplights are a
great example of conditions: “If the light is green, then go.” They are also extremely
important in programming since computers need explicit directions.

There are two types of conditionals in Hopscotch: “Check Once If” and “Check If… Else”.

LESSON 3 – WHICH EMOJI ARE YOU? 41

30

For Answer objects A, B, and C,
add these same two rules with
their respective answers. Refer
to your matrix for the text of the
answers. In this step, you’re
creating a total of 6 new rules!

LESSON
“Check Once If” is used when there are only two possibilities: 1. If the condition is true, do
something, and 2. If the condition is not true, move on. “Check Once If”, by contrast, lets
you check two things before moving on: 1. If something is true, do something, and 2. If this
thing is NOT true, do something else, then move on. For example, say you can go in the
ocean only if you’re wearing sunscreen or else you will have to put some on first. If you are
wearing sunscreen (the condition is true), then you may go into the ocean. If you are not
wearing sunscreen (the condition is false), then you must put some on first.

There are several ways to determine the answer to the quiz. The safest way is the one that
won’t have to be changed if more questions are added: A is the winner if the “A answers”
value is greater than both the “B answers” and the “C answers” values (and likewise for B
and C.) In Hopscotch, we check if two things are true by nesting one inside the other.

5.1 Add a new rule to the Title object

“Check Once If” is used when there are only two possibilities: 1. If the condition is true, do
something, and 2. If the condition is not true, move on. “Check Once If”, by contrast, lets
you check two things before moving on: 1. If something is true, do something, and 2. If this
thing is NOT true, do something else, then move on. For example, say you can go in the
ocean only if you’re wearing sunscreen or else you will have to put some on first. If you are
wearing sunscreen (the condition is true), then you may go into the ocean. If you are not
wearing sunscreen (the condition is false), then you must put some on first.

There are several ways to determine the answer to the quiz. The safest way is the one that
won’t have to be changed if more questions are added: A is the winner if the “A answers”
value is greater than both the “B answers” and the “C answers” values (and likewise for B
and C.) In Hopscotch, we check if two things are true by nesting one inside the other.

5.1 Add a new rule to the Title object

LESSON 3 – WHICH EMOJI ARE YOU? 42

LESSON
5.2 Edit the Title object’s rule in case there’s a tie (optional)

6. Tidying up (ES)
The hard part is done, and there’s just a bit more work to do to make the ending look snazzy.
One option is to center the results and hide the question and answers at the end. Your
students may come up with better ideas!

5.2 Edit the Title object’s rule in case there’s a tie (optional)

6. Tidying up (ES)
The hard part is done, and there’s just a bit more work to do to make the ending look snazzy.
One option is to center the results and hide the question and answers at the end. Your
students may come up with better ideas!

LESSON 3 – WHICH EMOJI ARE YOU? 43

If you can’t think of good result text
for a tie, just set text to “It’s a tie!”

LESSON
6.1 Edit Title’s rule

6.2 Add new rule to question and all three answers

6.1 Edit Title’s rule

6.2 Add new rule to question and all three answers

LESSON 3 – WHICH EMOJI ARE YOU? 44

Don’t forget to delete your test
objects!

(15 minutes, optional)

(5 minutes, optional)

DIFFERENTIATION

REFLECTION

LESSON 3 — WHICH EMOJI ARE YOU? 45

• How would you change the quiz to have more more answers or be longer?
• How could you change it to be a factual quiz—to change up whether the correct

answer is A, B, or C?
• Turn the quiz into a survey that keeps track of how lots of people have answered—use

this data to make a histogram.

• What is a value?
• What is a conditional?
• How are values and conditionals related or used together?
• How are events related to conditionals? How do you make a custom event? (When

play button is tapped, repeat forever, check once if …)
• What happens if there’s a tie? How do we use conditionals to detect a tie? (if a=b=c)

LESSON 4
FLAPPY BIRD

An exercise in reverse-engineering, both of a known
game and of the physical rules of the real world.

TIME

BIG IDEA

SKILL FOCUS

KEY VOCABULARY

TRANSFER GOALS

MATERIALS

LESSON 4 – FLAPPY BIRD 47

45-60 minutes (+15 minutes of optional, free code
time)

Coding means telling computers what to do, in
a language they can understand. Computers
speak numbers!

Physics Engine: the common set of rules that the
objects in the game follow to make the world feel
“real”.
Reverse Engineering: examining an existing
program or machine and figuring out how it works
so that we can reproduce it.

– 1 iPad per student, or 1 iPad per 2 students, for
pair programming
– Video available on YouTube:
http://hop.sc/flappyvideo
– Complete project available:
http://hop.sc/flappyproject

• Reverse Engineering
• CCSS.MATH.PRACTICE.MP4 Model with

mathematics.
• NGSS Practice 1 Defining problems
• NGSS Practice 2 Developing and using

models

1. Students will understand that math is an
important part of coding.

2. Students will anticipate how changing
code will change behavior.

3. Students will be able to test different
settings and choose the appropriate one.

4. Students will begin to recognize rules in
the world, both those that are
constructed (like games) or obligatory
(like physics).

http://hop.sc/flappyvideo
http://hop.sc/flappyproject

TEACHER BRIEF
Math is the language scientists use to express the rules of the physical world. From counting
tree rings to E=mc2, we use numbers and equations to be specific about how real things
move and change. When programmers design virtual worlds, we use math to tell the
computer how that virtual world should work. In this lesson, we will make Flappy Bird, and in
the process students will create a simple physics engine, using values to create an
environment that simulates, or models, the physics of the real world. For those who aren’t
“math people”, don’t fret! Most programming math is elementary-level.

Students will also explore the concept of reverse engineering, a process of examining an
existing program or machine and figuring out how it works in order to reproduce it. Students
should draw from their familiarity with the game or watch it in action before building, and
then work backwards to determine the physical elements necessary for the game.

We also introduce a new concept, functions (or abilities, as we call them in Hopscotch) in
this lesson.

LESSON 4 – FLAPPY BIRD 48

LESSON
0. Discussion (5 minutes)
Any game that models real-world physics, including falling and gravity, skidding, projectiles,
even water, uses what we call a Physics Engine. This is the common set of rules that the
objects in the game follow to make the world feel “real”. Making a good physics engine
takes a lot of trial and error, because the numbers need to be just right to feel real.

What are the physical elements of Flappy Bird? Watch a game of Flappy Bird as a class, and
make a list of the objects in the game and the rules that they are following. Write this list on
the board and use it as a guide to making the game. The order we give here is just an
efficient example, and your class may be better served by a different order:

1. Fall all the time + introduction of physics engine (LV) (10 minutes)
We recommend that you discuss and build this first rule together a class. The core part of
your Flappy Bird physics engine is gravity. The bird should fall when it is left alone. But, it
doesn’t just move down the screen at a constant rate: it speeds up as it falls, just like objects
fall in real life! We implement this by making the bird move by a value, called “Bird UpDown”
in the below code, instead of by a number. That way, we can change the value over time,
and the amount the bird moves will update respectively. This will give the appearance of a
bird falling at an increasing speed.

Writing this rule is a good opportunity to use an ability to organize the code for the physics
engine. An ability is a way to save code so you can reuse it somewhere else. This is a super
useful trick that will allow your students to create complex games and programs because
they don’t have to write the same code over and over. There is a saying in programming—
“Don’t repeat yourself”—which means you should only write something once. With abilities,
that’s possible.

Abilities also make your code easier to understand. If anyone wants to look at the code later,
they will understand that it, taken together, builds an engine to make the bird fall.

Ask your students why are we using values to change the speed. What is the difference
between the “Set Value” and “Increase Value” blocks? How is it like the difference between
“Set Angle” and “Turn”? Why are we using an ability to group our code? Walk your students
through adding the ability and then writing the code to make the bird fall at an increasing
speed forever. Or, you can have students try using psuedocode to write the rules on their
own and then share their ideas with the class. Check out the sample code to see one
possible implementation.

1.1 Add bird object

0. Discussion (5 minutes)
Any game that models real-world physics, including falling and gravity, skidding, projectiles,
even water, uses what we call a Physics Engine. This is the common set of rules that the
objects in the game follow to make the world feel “real”. Making a good physics engine
takes a lot of trial and error, because the numbers need to be just right to feel real.

What are the physical elements of Flappy Bird? Watch a game of Flappy Bird as a class, and
make a list of the objects in the game and the rules that they are following. Write this list on
the board and use it as a guide to making the game. The order we give here is just an
efficient example, and your class may be better served by a different order:

1. Fall all the time + introduction of physics engine (LV) (10 minutes)
We recommend that you discuss and build this first rule together a class. The core part of
your Flappy Bird physics engine is gravity. The bird should fall when it is left alone. But, it
doesn’t just move down the screen at a constant rate: it speeds up as it falls, just like objects
fall in real life! We implement this by making the bird move by a value, called “Bird UpDown”
in the below code, instead of by a number. That way, we can change the value over time,
and the amount the bird moves will update respectively. This will give the appearance of a
bird falling at an increasing speed.

Writing this rule is a good opportunity to use an ability to organize the code for the physics
engine. An ability is a way to save code so you can reuse it somewhere else. This is a super
useful trick that will allow your students to create complex games and programs because
they don’t have to write the same code over and over. There is a saying in programming—
“Don’t repeat yourself”—which means you should only write something once. With abilities,
that’s possible.

Abilities also make your code easier to understand. If anyone wants to look at the code later,
they will understand that it, taken together, builds an engine to make the bird fall.

Ask your students why are we using values to change the speed. What is the difference
between the “Set Value” and “Increase Value” blocks? How is it like the difference between
“Set Angle” and “Turn”? Why are we using an ability to group our code? Walk your students
through adding the ability and then writing the code to make the bird fall at an increasing
speed forever. Or, you can have students try using psuedocode to write the rules on their
own and then share their ideas with the class. Check out the sample code to see one
possible implementation.

1.1 Add bird object

LESSON 4 – FLAPPY BIRD 49

• First, the bird falls to the ground if left alone.
• Second, the bird flaps when you tap the iPad (thus staying afloat).
• Third, obstacles enter on the right of the screen and travel across to the left.
• Fourth, the game ends when the bird collides with any of the obstacles or the

ground.

LESSON
1.2 Add a rule to bird: create “Fall” ability

1.3 Make bird change Y by [blank] forever

1.4 Create a “Bird UpDown” value and plug it into the “Change Y by” block

1.2 Add a rule to bird: create “Fall” ability

1.3 Make bird change Y by [blank] forever

1.4 Create a “Bird UpDown” value and plug it into the “Change Y by” block

Notice that we don’t enter a
value in the “Change Y by”
block.

This is the crucial
moment where you
make the bird’s
movement change
over time by using
a value instead of a
static number. Tap
the bubble in
“Change Y by” to
get to your values.

LESSON 4 – FLAPPY BIRD 50

Press the plus sign to the right
of “My abilities” add a new
ability. Name it something
descriptive, like “Fall.” All of
the code you want to reuse or
group as the function should go
inside the ability. Collapse the
ability into one block by
tapping the arrow next to the
ability name. Note that
whenever you change an ability
in one place, it automatically
makes those changes wherever
else it is used!

LESSON
1.5 Make “Bird UpDown” decrease forever

1.6 Edit falling rule: Add a little rotation and some speed

2. Flap when iPad is tapped (ELS) (10 minutes)
As a class, discuss the second component of the physics engine. At this point, the bird just
falls nonstop. We need to add the second component of the physics enginge that will allow
the player to make the bird flap (and stay afloat) by tapping on the iPad. When the bird flaps,
it should move up the screen a little, but then keep falling once you stop tapping. You can
ask your class to hypothesize how they might make this happen before attempting to code
the rule on their own.

1.5 Make “Bird UpDown” decrease forever

1.6 Edit falling rule: Add a little rotation and some speed

2. Flap when iPad is tapped (ELS) (10 minutes)
As a class, discuss the second component of the physics engine. At this point, the bird just
falls nonstop. We need to add the second component of the physics enginge that will allow
the player to make the bird flap (and stay afloat) by tapping on the iPad. When the bird flaps,
it should move up the screen a little, but then keep falling once you stop tapping. You can
ask your class to hypothesize how they might make this happen before attempting to code
the rule on their own.

LESSON 4 – FLAPPY BIRD 51

Note: we found changing
“BirdUpDown” by -4 to work
well. Encourage students to
experiment with this number.

LESSON
We do this by changing the value that controls the bird’s position, “Bird UpDown”, to a
positive number when the bird is tapped. This is the second element of our physics engine.
The number we choose here dictates the feel of the game.

You can have students implement this code on their own, in groups, or as a class. Have
students experiment with different numbers here and in the falling and turning rules. Fiddle
and test until the combination feels right—the bird falls at a believable rate and accelerates
up accordingly.

If there is extra time after students have finished their physics engine, add animation to the
bird’s flapping rule.

2.1 Add a new rule: Set “BirdUpDown” value to a positive number when iPad is
tapped

3. Add obstacles (LS) (10 minutes)
Students next get to reverse engineer the pipes’s movement! Reverse engineering is a useful
practice in programming in which you examine an existing program or machine and figure
out how it works so that you can reproduce it. Using a completed Flappy Bird game as an
example, ask your students to discuss how they might make the pipes travel across the
screen (while the player attempts to guide bird through them). Students may remember from
Geometry Dash that one obstacle stands in for many and that they travel backward to make
the hero look like it’s moving forward. But, in this game, the Y position of the pipes are
different every time, so you have to use randomness.

Usually we give a lot of freedom in character and emoji choice, but in the case of the
obstacles, it’s important to follow along exactly, at least in your first version of the game. The
code we offer enables the pipes to travel together with a big enough gap for the bird to fly
through. This can be changed later once students understand why it works.

Have your students try to code the pipe sequence independently, then compare with their
neighbor. Did everyone decide on the same rules in the same order? Did anyone get
identical behavior with different rules? The sequence below is one of many possible
solutions.

We do this by changing the value that controls the bird’s position, “Bird UpDown”, to a
positive number when the bird is tapped. This is the second element of our physics engine.
The number we choose here dictates the feel of the game.

You can have students implement this code on their own, in groups, or as a class. Have
students experiment with different numbers here and in the falling and turning rules. Fiddle
and test until the combination feels right—the bird falls at a believable rate and accelerates
up accordingly.

If there is extra time after students have finished their physics engine, add animation to the
bird’s flapping rule.

2.1 Add a new rule: Set “BirdUpDown” value to a positive number when iPad is
tapped

3. Add obstacles (LS) (10 minutes)
Students next get to reverse engineer the pipes’s movement! Reverse engineering is a useful
practice in programming in which you examine an existing program or machine and figure
out how it works so that you can reproduce it. Using a completed Flappy Bird game as an
example, ask your students to discuss how they might make the pipes travel across the
screen (while the player attempts to guide bird through them). Students may remember from
Geometry Dash that one obstacle stands in for many and that they travel backward to make
the hero look like it’s moving forward. But, in this game, the Y position of the pipes are
different every time, so you have to use randomness.

Usually we give a lot of freedom in character and emoji choice, but in the case of the
obstacles, it’s important to follow along exactly, at least in your first version of the game. The
code we offer enables the pipes to travel together with a big enough gap for the bird to fly
through. This can be changed later once students understand why it works.

Have your students try to code the pipe sequence independently, then compare with their
neighbor. Did everyone decide on the same rules in the same order? Did anyone get
identical behavior with different rules? The sequence below is one of many possible
solutions.

LESSON 4 – FLAPPY BIRD 52

LESSON

LESSON

3.1 Add obstacle object

3.2 Add new rule to obstacle: Turn and size

3.3 Add a new rule to obstacle: Reverse engineer obstacle movement

4. End when you hit an obstacle (EV) (5 minutes)
The game ends when the bird collides with the obstacle (pipes). By this point, some students
should be able design a rule that makes the game end on their own. If not, they can work in
pairs to build a win state. The simplest implementation is to make both the bird and the
pipes disappear upon collision. An advanced programmer could animate the bird to turn
toward the ground and fall before disappearing and get the pipes to remain visible but stop
moving.

3.1 Add obstacle object

3.2 Add new rule to obstacle: Turn and size

3.3 Add a new rule to obstacle: Reverse engineer obstacle movement

4. End when you hit an obstacle (EV) (5 minutes)
The game ends when the bird collides with the obstacle (pipes). By this point, some students
should be able design a rule that makes the game end on their own. If not, they can work in
pairs to build a win state. The simplest implementation is to make both the bird and the
pipes disappear upon collision. An advanced programmer could animate the bird to turn
toward the ground and fall before disappearing and get the pipes to remain visible but stop
moving.

LESSON 4 – FLAPPY BIRD 53

To add the obstacle pipes, type
in four green emoji squares,
then 5 spaces, then another
four green emoji squares.

LESSON
4.1 Add new rules to bird and obstacle object

5. Keep score (ELV) (15 minutes) (optional)
If there’s extra time, see if students can keep track of the score. The following is a clever way
to keep score, and to automatically stop the score from increasing further when the game is
over.

It depends on the pipes either stopping or going invisible when they collide with the bird. An
object will both display the current score and detect when the score should be increased! It
relies on a mechanism in which the player earns points only when the pipes pass the bird
without colliding. Conveniently, as soon as the pipes get past the bird, they bump into the
Score text, so that event can trigger the score increase. Students might remember how to
make a text object display a value from Quiz. If not, guide them to a good solution.

5.1 Add a score object

4.1 Add new rules to bird and obstacle object

5. Keep score (ELV) (15 minutes) (optional)
If there’s extra time, see if students can keep track of the score. The following is a clever way
to keep score, and to automatically stop the score from increasing further when the game is
over.

It depends on the pipes either stopping or going invisible when they collide with the bird. An
object will both display the current score and detect when the score should be increased! It
relies on a mechanism in which the player earns points only when the pipes pass the bird
without colliding. Conveniently, as soon as the pipes get past the bird, they bump into the
Score text, so that event can trigger the score increase. Students might remember how to
make a text object display a value from Quiz. If not, guide them to a good solution.

5.1 Add a score object

LESSON 4 – FLAPPY BIRD 54

Place it in the bottom left corner
of the screen, even further left
than the bird.

LESSON
5.2 Add a new rule: Make score object show score value forever

5.3 Add a new rule to the score or the obstacle: increase score

5.4 Publish your game! What’s your high score?

5.2 Add a new rule: Make score object show score value forever

5.3 Add a new rule to the score or the obstacle: increase score

5.4 Publish your game! What’s your high score?

LESSON 4 – FLAPPY BIRD 55

You will need to create a new
value, “Score”, for this step.

Differentiation (15 minutes, optional)

Reflection (5 minutes)

DIFFERENTIATION

REFLECTION

LESSON 4 – FLAPPY BIRD 56

• Add a better background
• Add more birds
• Change the speed of the pipes
• Add bonuses or other objects

• Compare Geometry Dash and Flappy Bird.
⁃ What elements do they have in common?
⁃ How are they different?
⁃ How could you use some ideas from one to improve the other?

• What is a physics engine?
• What other games have them?
• Should game physics always be like real-world physics?

⁃ Why or why not?

LESSON 5
SUBWAY SURFERS

An action game that has multiple possible
implementations.

TIME

BIG IDEA

SKILL FOCUS

KEY VOCABULARY

TRANSFER GOALS

MATERIALS

LESSON 5 – SUBWAY SURFERS 58

45-60 minutes (+15 minutes of
optional, free code time)

There is often more than one solution to a
problem, and some solutions are better than
others. There may be another way!

Pair programming: a technique in which two
people work together on one device.

– 1 iPad per student, or 1 iPad per 2
students, for pair programming
–Video available on YouTube:
http://hop.sc/subwayvideo
– Complete project available:
http://hop.sc/subwayproject

• Collaboration
• CCSS.MATH.PRACTICE.MP3 Construct

viable arguments and critique the
reasoning of others.

• NGSS Practice 7 Engaging in argument
from evidence

• NGSS Practice 8 Obtaining, evaluating,
and communicating information

1. Students will try pair programming.
2. Students will use appropriate vocabulary

to communicate with their partner.
3. Students will compromise and agree on

solutions.
4. Students will formulate strategies for

dealing with disagreement, and compare
solutions based on implementing and
evaluating, without taking it personally.

http://hop.sc/subwayvideo
http://hop.sc/subwayproject

TEACHER BRIEF
Subway Surfers is an arcade-style game where the player controls a character running in
three lanes, dodging trains and other obstacles by swiping to change lanes. We will build a
stripped-down version of this game, focusing on the interaction between the hero and the
trains. In extra time, students may be inspired to add the other elements of Subway Surfers,
like collecting coins and bonuses, and jumping and/or rolling.

This lesson is a great chance to introduce pair programming, a technique in which two
people work together on one device.

This lesson is an opportunity to work together, using relevant vocabulary, explaining ideas
and comparing possible solutions. Assign pairs in whatever way you prefer. Where there is an
odd student, create a group of three. The key to working together is understanding that
there may be more than one solution to a problem, and the team decides together which
solution is best based on how well it works—not on whose idea it was!

The crux of this lesson is deriving the formula for the train choosing one of three lanes to
appear in. Be sure to familiarize yourself with it in advance of teaching the class.

LESSON 5 – SUBWAY SURFERS 59

LESSON
0. Discussion (5 minutes)
In Pair Programming, two programmers take turns coding. The driver holds the iPad and
does the coding, and the navigator watches for mistakes, helps come up with solutions, and
keeps the pair on task. Every few minutes, they switch roles. Both jobs are equally important!
This is especially helpful when making complex games, because there are lots of details to
attend to, and an extra pair of eyes can help spot errors before they become bugs. In
professional environments, this is often considered a best-practice (and we do it frequently at
Hopscotch).

What things would you need to keep in mind while pair programming? Ask your students to
make a list of things that they should and should not do while pair programming (e.g. they
should ask questions about why the programmer chose a certain block; they should not call
each other names.)

1. Draw lanes (S) (10 minutes)
Show your students a completed version of the game. The first step is to create the three
colored tracks that run down the middle of the screen. See if your students can draw three
random-color lanes by reusing as much code as possible (abilities are helpful for this!). One
solution is to make one drawing object, and repeat setting the position and drawing the line.
Another possibility is to make three separate drawing objects that each use the same “Draw
Lane” ability.

1.1 Add an invisible text object at the top middle of the screen

0. Discussion (5 minutes)
In Pair Programming, two programmers take turns coding. The driver holds the iPad and
does the coding, and the navigator watches for mistakes, helps come up with solutions, and
keeps the pair on task. Every few minutes, they switch roles. Both jobs are equally important!
This is especially helpful when making complex games, because there are lots of details to
attend to, and an extra pair of eyes can help spot errors before they become bugs. In
professional environments, this is often considered a best-practice (and we do it frequently at
Hopscotch).

What things would you need to keep in mind while pair programming? Ask your students to
make a list of things that they should and should not do while pair programming (e.g. they
should ask questions about why the programmer chose a certain block; they should not call
each other names.)

1. Draw lanes (S) (10 minutes)
Show your students a completed version of the game. The first step is to create the three
colored tracks that run down the middle of the screen. See if your students can draw three
random-color lanes by reusing as much code as possible (abilities are helpful for this!). One
solution is to make one drawing object, and repeat setting the position and drawing the line.
Another possibility is to make three separate drawing objects that each use the same “Draw
Lane” ability.

1.1 Add an invisible text object at the top middle of the screen

How would your
code change if you
put the text object
at the bottom of
the screen? It
would have to
move by a positive
amount.

LESSON 5 – SUBWAY SURFERS 60

LESSON
1.2 Add a rule to text object: draw lane

1.3 Make it an ability

1.4 Add two more text objects at appropriate places, give them the “Draw Lane”
ability

2. Control hero (ELCV) (10 minutes)
As your students saw when playing the sample game, in Subway Surfers the player controls
the hero by swiping right and left on the iPad, jumping across lanes to avoid the oncoming

1.2 Add a rule to text object: draw lane

1.3 Make it an ability

1.4 Add two more text objects at appropriate places, give them the “Draw Lane”
ability

2. Control hero (ELCV) (10 minutes)
As your students saw when playing the sample game, in Subway Surfers the player controls
the hero by swiping right and left on the iPad, jumping across lanes to avoid the oncoming

LESSON 5 – SUBWAY SURFERS 61

LESSON
 objects. In students’ versions, they will make the player swipe the hero, rather than iPad.

The rules for animating and controlling the hero are a chance to practice the concepts of
events and loops learned in previous lessons. You can discuss the general requirements of
this action as a class and then give your students the chance to try coding these rules on their
own. The sample code below is just one possible solution.

Check in to compare the results and make sure everyone’s is working and, if your students
have not brought it up, then raise the issue that nothing is stopping the player from swiping
their hero out of the lanes and “off the board”. In order to establish boundaries, we can
introduce logic that only allows the character to move within a certain zone.

In our game, the character can move in one case but not another; we will tell the computer
to check and see if a condition is true before moving on to execute the command. We do
this with a conditional that checks the character's position on the X axis.

As a class, decide the range of X positions for which the character may be moved right and
left, respectively. Derive the inequalities from these numbers (e.g. If character’s X position is
greater than [some number] you cannot move it further to the right). Code these rules as a
class, in pairs, or as individuals. The numbers in the sample code are a possible solution.

2.1 Add hero object
2.2 Add new rule to hero: animate hero object to run forever

2.3 Add new rule to hero: Change X by 150 when swiped right

 objects. In students’ versions, they will make the player swipe the hero, rather than iPad.

The rules for animating and controlling the hero are a chance to practice the concepts of
events and loops learned in previous lessons. You can discuss the general requirements of
this action as a class and then give your students the chance to try coding these rules on their
own. The sample code below is just one possible solution.

Check in to compare the results and make sure everyone’s is working and, if your students
have not brought it up, then raise the issue that nothing is stopping the player from swiping
their hero out of the lanes and “off the board”. In order to establish boundaries, we can
introduce logic that only allows the character to move within a certain zone.

In our game, the character can move in one case but not another; we will tell the computer
to check and see if a condition is true before moving on to execute the command. We do
this with a conditional that checks the character's position on the X axis.

As a class, decide the range of X positions for which the character may be moved right and
left, respectively. Derive the inequalities from these numbers (e.g. If character’s X position is
greater than [some number] you cannot move it further to the right). Code these rules as a
class, in pairs, or as individuals. The numbers in the sample code are a possible solution.

2.1 Add hero object
2.2 Add new rule to hero: animate hero object to run forever

2.3 Add new rule to hero: Change X by 150 when swiped right

There is also a Change Pose
block that you can investigate.
Play around with wait blocks
until you have something you
like.

LESSON 5 – SUBWAY SURFERS 62

LESSON
2.4 Add new rule to hero: Change X by -150 when swiped left

2.5 Edit swipe rules to check for hero’s X position

3. Add trains (SV) (10 minutes)
The most challenging aspect of this game is setting the trains to appear as challenging
obstacles. Students should start, in pairs, by discussing how to program one train to move
along one lane, starting at the top. If they forget the height of the screen, they can use the
built-in value, “iPad’s height”.

Once they have a train running in one lane, they will need to program it to randomly appear
in different lanes. This is accomplished by choosing a range of X-positions in which it may
appear, using one of these formulas for the X position:

2.4 Add new rule to hero: Change X by -150 when swiped left

2.5 Edit swipe rules to check for hero’s X position

3. Add trains (SV) (10 minutes)
The most challenging aspect of this game is setting the trains to appear as challenging
obstacles. Students should start, in pairs, by discussing how to program one train to move
along one lane, starting at the top. If they forget the height of the screen, they can use the
built-in value, “iPad’s height”.

Once they have a train running in one lane, they will need to program it to randomly appear
in different lanes. This is accomplished by choosing a range of X-positions in which it may
appear, using one of these formulas for the X position:

LESSON 5 – SUBWAY SURFERS 63

LESSON
If these formulas are confusing, check out the code below. For older students, work out this
formula in pairs. Younger students may need to be shown or led to discover the formula. In
either case, test the formula out with the possible values on paper before trying it in
Hopscotch. Have students code it when they think they have it right, then evaluate the
formula by testing its effect in the game.

You can also ask the class how they would change the code if their lanes were wider. (change
the X-position by 150 to accommodate lane width, make 200 lower). How would they change
it if they had more than 3 lanes? (Change second number range to number of lanes, make
200 lower) For older students: consider that these changes affect more than just one
number; can you think of a general-purpose equation using variables for “NumberOfLanes”
and “LaneWidth”?

3.1 Add train object and make it bigger

3.2 Add new rule to train: Make it run along one track

3.3 Edit rule to choose random lane

If these formulas are confusing, check out the code below. For older students, work out this
formula in pairs. Younger students may need to be shown or led to discover the formula. In
either case, test the formula out with the possible values on paper before trying it in
Hopscotch. Have students code it when they think they have it right, then evaluate the
formula by testing its effect in the game.

You can also ask the class how they would change the code if their lanes were wider. (change
the X-position by 150 to accommodate lane width, make 200 lower). How would they change
it if they had more than 3 lanes? (Change second number range to number of lanes, make
200 lower) For older students: consider that these changes affect more than just one
number; can you think of a general-purpose equation using variables for “NumberOfLanes”
and “LaneWidth”?

3.1 Add train object and make it bigger

3.2 Add new rule to train: Make it run along one track

3.3 Edit rule to choose random lane

Or, you can
Change Y by (-1 * iPad’s
Height).

LESSON 5 – SUBWAY SURFERS 64

Note: we combined screenshots
to give you this nice full view of
the code. You will need to drag
the set position block to the left
to see the Y value.

LESSON
3.4 Adjust speed

4. Collisions (ES) (5 minutes)
Ending the game is an opportunity for creativity. How do students want to indicate to the
player that a collision has occurred? If you want, for example, to grow and spin at the same
time, that’s concurrency, and should be implemented with two different rules with the same
event. Ask students to come up with a good indication that a collision has occured, code it,
and show it to a partner. The partner can help debug if necessary.

4.1 Add new rule to hero: disappear when you collide with a train

3.4 Adjust speed

4. Collisions (ES) (5 minutes)
Ending the game is an opportunity for creativity. How do students want to indicate to the
player that a collision has occurred? If you want, for example, to grow and spin at the same
time, that’s concurrency, and should be implemented with two different rules with the same
event. Ask students to come up with a good indication that a collision has occured, code it,
and show it to a partner. The partner can help debug if necessary.

4.1 Add new rule to hero: disappear when you collide with a train

LESSON 5 – SUBWAY SURFERS 65

LESSON
4.2 Edit hero’s rule: Animate collision

5. Keep score (ELV) (5 minutes)
As students might recall from earlier lessons, we use values to store numbers that may be
changed. To create a score, students should introduce a text object that will keep track of
and display the score. In this case, though, the score shouldn’t keep increasing forever: it
should stop when the hero collides with a train. You can ask students to discuss a solution to
this problem. One possible way to implement the score is to change the event that triggers
this rule so instead of happening forever, it only happens when the hero is visible on the
screen (e.g. has not collided with the train).

5.1 Add a score object
5.2 Add new rule to score: Make it count up by 1 forever and display score

5.3 Change the event and delete the loop

5.4 Publish your game!

4.2 Edit hero’s rule: Animate collision

5. Keep score (ELV) (5 minutes)
As students might recall from earlier lessons, we use values to store numbers that may be
changed. To create a score, students should introduce a text object that will keep track of
and display the score. In this case, though, the score shouldn’t keep increasing forever: it
should stop when the hero collides with a train. You can ask students to discuss a solution to
this problem. One possible way to implement the score is to change the event that triggers
this rule so instead of happening forever, it only happens when the hero is visible on the
screen (e.g. has not collided with the train).

5.1 Add a score object
5.2 Add new rule to score: Make it count up by 1 forever and display score

5.3 Change the event and delete the loop

5.4 Publish your game!

The score is increasing as fast
as the computer can go. Is
that too fast? Add a wait
block to slow it down. Find a
good value for wait.

The reason you can delete
the loop is that this event is
already repeating!

LESSON 5 – SUBWAY SURFERS 66

DIFFERENTIATION

REFLECTION

LESSON 5 – SUBWAY SURFERS 67

(15 minutes, optional)
In Subway Surfers, you have the option of jumping over or rolling under barriers, in addition
to the option of avoiding them. Can you add this functionality to your game? Devise a
strategy in pairs, either on paper, or in code. Share your ideas with the class and see how
they are similar. Can we come up with a better solution by combining our ideas?

• Add hurdle object
• Make train’s behavior an ability, then give hurdle the same train rule
• Give hero a swipe down rule to roll- make “rolling value”
• When hero bumps hurdle, check if rolling
• Can you jump over the hurdles by swiping up?
• Can you make the trains speed up as the game goes along?

• What is pair programming? Why is it useful?
• Can you see a pattern in the order we use to build a game? Why did we choose that

order? Is it the best, or can you think of improvements?
• Why are some values a different color than others? (Some are built-in and you change

them with dedicated blocks, others are the ones you made and you have to change
them by using set value or increase value.)

(5 minutes, optional)

LESSON 6
CAN YOU ESCAPE?

An open-ended logic game, enabling students
to make the connection between real-world

logic and programming logic.

TIME

BIG IDEA

SKILL FOCUS

KEY VOCABULARY

MATERIALS

LESSON 6 - CAN YOU ESCAPE 69

45-60 minutes (+15 minutes of optional, free
code time)

The way to make good programs is to have
ideas and make mistakes, over and over. Stick
to it!

Logic: the process of making decisions
Iteration: having ideas and making mistakes,
over and over

– 1 iPad per student, or 1 iPad per 2 students,
for pair programming
– Video available on YouTube:
http://hop.sc/escapetheroomvideo
– Complete project available:
http://hop.sc/escapetheroomproject

• Iteration
• CCSS.MATH.PRACTICE.MP1 Make

sense of problems and persevere in
solving them

• CCSS.MATH.PRACTICE.MP6 Attend to
precision

• Practice 1 Defining problems
• Practice 6 Designing solutions

TRANSFER GOALS 1. Students will generate ideas for game
elements and design solutions.

2. Students will test solutions and design
improvements.

3. Students will recognize that some ideas
take more than an hour to implement.

4. Students will be able to define the 5
Core Coding Concepts and give
examples of their use.

5. Students will recognize the
programming convention of 1=True,
0=False.

http://hop.sc/escapetheroomvideo
http://hop.sc/escapetheroomprojec

TEACHER BRIEF

An Escape Game is an adventure game in which, surprise surprise, the player is locked in a
room and must locate objects and solve puzzles to escape. Can You Escape? is a current
example, but The Room is related, and Myst and Monkey Island are ancestors. This type of
game relies heavily on logic, order of events, and attention to detail. It pulls together the
programming concepts introduced in previous lessons and gives students a great
opportunity to be creative. Students will create values to keep track of the state of the game,
then use conditionals and events to change the behavior of the game, depending what
state it is in.

The foundation of this game, and computing as a field, is binary logic. In Escape the Room,
students will use binary logic to assess whether the player has completed the activities
required to escape. While they have not, they cannot leave (the escape condition is untrue,
or 0). Once they have completed the activities required, the escape condition becomes true
(1) and the player can escape!

This activity is an excellent opportunity for customization and extra time. It can be worthwhile
to start with a quick summary of these concepts and prepare students to implement them on
their own. This process of making small, incremental changes to your code—iteration—is a
key tenant of programming.

LESSON 6 - CAN YOU ESCAPE? 70

LESSON
0. Discussion of Escape genre (5 minutes)
Some of your students will be familiar with the escape game genre, and some will not. Take
a few minutes to get everyone on the same page. Look at some examples on the projector,
or elicit descriptions of good escape games from the class. Talk about why they are fun. A
good escape game should be challenging, but not impossible, and have a few puzzles, but
not too many. Are there other important elements, like an interesting setting, good
animation, or sound effects?

Remind your students that the best programmers make lots of small changes to their code
and test them frequently. This process, iteration, helps your identify bugs early and make
sure that everything works as you intend. We, at Hopscotch, are always reminding ourselves
to slow down and check our work. :)

1. Intoduction to basic logic (EVC) (10 minutes)
Discuss the basic premise of the game with your class: the player is trapped in a room that
has a locked door and they, initially, do not have the key. The player’s task is to find the key
and escape, but this is complicated by series of puzzles that they have to solve to find the
key.

Since the door cannot open unless the player has found the key, the game must know
whether or not it’s been found at all times. We will create and use a value “HasKey” to keep
track of this condition with the help of one of computing’s most important concepts: binary
logic.

In binary logic, we use 0 to represent FALSE and 1 to represent TRUE. These are known as
truth values. Imagine a lamp: When the switch is in the ON position, 1 light is on, so the
sentence “a light is on” is TRUE. When it is in the OFF position, 0 lights are on, so the
sentence “a light is on” is FALSE. Now, if you have two lamps, you can deal with them both:
If the first switch is in the ON position (1) and the second is in the OFF position (0), the
sentence “a light is on” (0+1) is TRUE! If you’ve ever heard jokes about computing being all
0s and 1s, this is why…

Start by having students to independently establish the room by adding key and a door that
opens when swiped. Then, in pairs or as a class, discuss the logic required to only open the
door when the key is found. Depending on your students’ experience level, you might ask
them to come up with and share out potential logic rules.

Make sure everyone is on the same page and then have students code the logic rules. In the
escape game, when the key is found (tapped), “HasKey” will equal 1 (True), and when it has
not, “HasKey” will equal 0 (False). The door should only open when “HasKey” equals 1. If
“HasKey” does not equal one, the door should signal to the player that it cannot be opened.
This is a good opportunity to discuss the difference between the “Check Once If” and
“Check Once If // Else”.

0. Discussion of Escape genre (5 minutes)
Some of your students will be familiar with the escape game genre, and some will not. Take
a few minutes to get everyone on the same page. Look at some examples on the projector,
or elicit descriptions of good escape games from the class. Talk about why they are fun. A
good escape game should be challenging, but not impossible, and have a few puzzles, but
not too many. Are there other important elements, like an interesting setting, good
animation, or sound effects?

Remind your students that the best programmers make lots of small changes to their code
and test them frequently. This process, iteration, helps your identify bugs early and make
sure that everything works as you intend. We, at Hopscotch, are always reminding ourselves
to slow down and check our work. :)

1. Intoduction to basic logic (EVC) (10 minutes)
Discuss the basic premise of the game with your class: the player is trapped in a room that
has a locked door and they, initially, do not have the key. The player’s task is to find the key
and escape, but this is complicated by series of puzzles that they have to solve to find the
key.

Since the door cannot open unless the player has found the key, the game must know
whether or not it’s been found at all times. We will create and use a value “HasKey” to keep
track of this condition with the help of one of computing’s most important concepts: binary
logic.

In binary logic, we use 0 to represent FALSE and 1 to represent TRUE. These are known as
truth values. Imagine a lamp: When the switch is in the ON position, 1 light is on, so the
sentence “a light is on” is TRUE. When it is in the OFF position, 0 lights are on, so the
sentence “a light is on” is FALSE. Now, if you have two lamps, you can deal with them both:
If the first switch is in the ON position (1) and the second is in the OFF position (0), the
sentence “a light is on” (0+1) is TRUE! If you’ve ever heard jokes about computing being all
0s and 1s, this is why…

Start by having students to independently establish the room by adding key and a door that
opens when swiped. Then, in pairs or as a class, discuss the logic required to only open the
door when the key is found. Depending on your students’ experience level, you might ask
them to come up with and share out potential logic rules.

Make sure everyone is on the same page and then have students code the logic rules. In the
escape game, when the key is found (tapped), “HasKey” will equal 1 (True), and when it has
not, “HasKey” will equal 0 (False). The door should only open when “HasKey” equals 1. If
“HasKey” does not equal one, the door should signal to the player that it cannot be opened.
This is a good opportunity to discuss the difference between the “Check Once If” and
“Check Once If // Else”.

LESSON 6 - CAN YOU ESCAPE? 71

LESSON
The door cannot be opened unless the player has the key (“HasKey” = 1). Students will use
conditionals to create two states:

The door opens if the player has the key.
The door wiggles (but does not open) if the player does not have the key.

1.1 Add door & key emojis
1.2 Make the door bigger

1.3 Animate door opening

1.4 Set HasKey to 1 when you get the key

1.5 When door is swiped, check if “HasKey” = 1, then execute the opening code.

The door cannot be opened unless the player has the key (“HasKey” = 1). Students will use
conditionals to create two states:

The door opens if the player has the key.
The door wiggles (but does not open) if the player does not have the key.

1.1 Add door & key emojis
1.2 Make the door bigger

1.3 Animate door opening

1.4 Set HasKey to 1 when you get the key

1.5 When door is swiped, check if “HasKey” = 1, then execute the opening code.

LESSON 6 - CAN YOU ESCAPE? 72

You will need to add the
“HasKey” value. Remember
that all values are 0 by default
before you set them.

Check out that “Else”
condition!

LESSON
2. Two-step logic (ES) (10 minutes)
This game is too easy! Let’s start adding things to make the key harder to get. One possible
solution is to obscure objects by putting one in front of the other and revealing the second
only when the first (outermost) has been moved. The below code shows how to do this. Note
that objects show up in the order you added them. If you want one character to be in front of
another, use “Bring to Front”. There is also “Send to Back.” What does that do? Discuss
where in your code you would use these (generally as the first action).

2.1 Add portrait emoji at same position as key

2.2 Make portrait bigger

2.3 Bring to Front

2.4 Make portrait slide up, then back down, when swiped

2. Two-step logic (ES) (10 minutes)
This game is too easy! Let’s start adding things to make the key harder to get. One possible
solution is to obscure objects by putting one in front of the other and revealing the second
only when the first (outermost) has been moved. The below code shows how to do this. Note
that objects show up in the order you added them. If you want one character to be in front of
another, use “Bring to Front”. There is also “Send to Back.” What does that do? Discuss
where in your code you would use these (generally as the first action).

2.1 Add portrait emoji at same position as key

2.2 Make portrait bigger

2.3 Bring to Front

2.4 Make portrait slide up, then back down, when swiped

LESSON 6 - CAN YOU ESCAPE? 73

LESSON
2.5 Test and adjust positions of objects

3. Inventory (ESV) (10 minutes)
An Inventory is a widely-used game element that helps the player keep track of the things
they “have”. There are multiple ways to implement an Inventory; one way is to create a
designated storage place on the screen with copies of all Inventory items, and then to show
or hide each item depending on whether it’s been collected. We already keep track of this
state using the “HasKey” value!

Students should start by drawing an Inventory box, and then add a new key emoji. In pairs,
see if they can identify the two rules this key needs (hint: one for each state). As a class, make
sure everyone has the right rules. Then, together, adjust the door’s rule to change the
“HasKey” value back to 0 when it has been used to open the door. Test the program and
check whether the Inventory key is appearing and disappearing at the right times.

3.1 Add Inventory label (optional)

3.2 Draw Inventory box (optional)

3.3 Add key emoji to Inventory

3.4 Add a rule: Do not display key in Inventory when condition is false

2.5 Test and adjust positions of objects

3. Inventory (ESV) (10 minutes)
An Inventory is a widely-used game element that helps the player keep track of the things
they “have”. There are multiple ways to implement an Inventory; one way is to create a
designated storage place on the screen with copies of all Inventory items, and then to show
or hide each item depending on whether it’s been collected. We already keep track of this
state using the “HasKey” value!

Students should start by drawing an Inventory box, and then add a new key emoji. In pairs,
see if they can identify the two rules this key needs (hint: one for each state). As a class, make
sure everyone has the right rules. Then, together, adjust the door’s rule to change the
“HasKey” value back to 0 when it has been used to open the door. Test the program and
check whether the Inventory key is appearing and disappearing at the right times.

3.1 Add Inventory label (optional)

3.2 Draw Inventory box (optional)

3.3 Add key emoji to Inventory

3.4 Add a rule: Do not display key in Inventory when condition is false

LESSON 6 - CAN YOU ESCAPE? 74

LESSON
3.5 Add a rule: Display key in Inventory when condition is true

3.6 Edit the door’s swipe rule to set “HasKey” to 0 (when you’ve used it up)

4. Win State (EV) (5 minutes)
It’s important to tell the player when they’ve won. We’ll keep track of whether the player has
won using a new value, “Ending”. When the game is finished, “Ending” will be 1. Ask your
students to consider which event would trigger the value to increase from 0 (starting value) to
1?

As in previous games, ask students to create a “win state” text that will appear when the
“Ending” value is 1.

As a class, discuss what would happen if there were another set of conditions that set
“Ending” to 2 or 3 and caused different endings to happen.

3.5 Add a rule: Display key in Inventory when condition is true

3.6 Edit the door’s swipe rule to set “HasKey” to 0 (when you’ve used it up)

4. Win State (EV) (5 minutes)
It’s important to tell the player when they’ve won. We’ll keep track of whether the player has
won using a new value, “Ending”. When the game is finished, “Ending” will be 1. Ask your
students to consider which event would trigger the value to increase from 0 (starting value) to
1?

As in previous games, ask students to create a “win state” text that will appear when the
“Ending” value is 1.

As a class, discuss what would happen if there were another set of conditions that set
“Ending” to 2 or 3 and caused different endings to happen.

LESSON 6 - CAN YOU ESCAPE? 75

LESSON
4.1 Edit door’s rule: Opening door sets “Ending” to 1 (remember all values are 0
by default when you make them)

4.3 Add new text object, cancel text

4.4 Add new rule to text object

4.5 Publish your game!

4.1 Edit door’s rule: Opening door sets “Ending” to 1 (remember all values are 0
by default when you make them)

4.3 Add new text object, cancel text

4.4 Add new rule to text object

4.5 Publish your game!

Create a new value “Ending”.

LESSON 6 - CAN YOU ESCAPE? 76

(15 minutes, optional)

(5 minutes, optional)

DIFFERENTIATION

REFLECTION

LESSON 6 – CAN YOU ESCAPE? 77

• Show how you could have two different endings
• Add appropriate sounds to each event
• Add more puzzles to the game (search for escape games in the Hopscotch Community

for inspiration)
• Uster testing: watch silently while other people play your game and observe how they

play it.
• Active feedback: ask players what they thought of your game.
• Make a real-life escape game in your classroom!

• What is logic? Is there a difference between coding logic and real-life logic?
• What’s the difference between IF and IF...ELSE?
• How do you check if two things are both true? (Nested conditionals)
• How do you choose how to respond to feedback? Do you have to make all the

changes someone suggests?

LESSONS 7 & 8
Now that your students have completed Lessons 1-6, they should have a solid grasp of the core
coding concepts we’ve covered and of Hopscotch as a tool. These lessons are designed to give
students an opportunity to practice their skills and apply them in new ways. You can determine
the right amount of structure based on your class’s experience and needs. Younger kids might
need a more concrete assignments, whereas older students may relish the opportunity to make
something from their imagination.

An important idea to explore in creative coding is identifying which problems you can solve with
a computer (a computable problem) and which are better solved by a human. For example, a
video game can easily be solved by a computer, but a mind-reading game cannot.

Here are some suggestions of how you can guide your class; do what is best for your
goals:

Go deeper with games from previous lessons:
- Refine one of the games you made in lessons 1-6
- Design and make your own game, using pieces from these lessons
- Form a game dev team and make a big game together, assigning roles to each team
 member
- Have a game showcase with another class

Link the coding experience to other subjects:
- Write a review of someone else’s game
- Make a commercial for your game: video, website, magazine ad
- Make a video tutorial for how to use a certain block, or define a term
- Write a persuasive essay about two different ways to do something, and which one is
 better
- Record your project as an animated gif (make a meme)

Explore Hopscotch in greater detail:
- Do the tutorial videos in the app
- Find a game you like in the Community and remix it
- Design a game as a team and implement it, using the Forum to ask for help.

LESSONS 7 & 8 78

 RUBRIC

RUBRIC 79

Inspired by http://www.edutopia.org/pdfs/blogs/edutopia-yokana-maker-rubric.pdf

Student is
aware of the
goal of the
program,
returns to the
task when
asked, has
some ideas
when
prompted,
asks for help
when stuck

Student
understands
the goal of
the program,
has their own
ideas, rarely
goes off-task,
and attempts
to solve
problems first
before asking
for help.

Program
shows some
understanding
of core
concepts and
skills

Program
reflects
understanding
of concepts
and skills

Unsatisfactory

Program does
not work, or
has major
flaws that
prevent its
intended use

Program
mostly works,
and has only
minor flaws

Program
works in the
way the
student
intended

Program
shows
synthesis of
new and old
concepts and
skills.

Program lacks
understanding
of core
concepts and
skills

Student
cannot
describe how
their code
works

Student can
mostly
describe how
their code
works

Student can
describe how
their code
works and can
make changes
that have
desired
effects

Student can
describe how
their code
works and
how they
wrote it, and
help others
debug their
code
Student
embraces the
goal of the
program and
chooses to try
out new ideas
and multiple
solutions,
even when
they are
challenging.

Student is not
aware of the
goal of the
program, is
frequently off-
task, does not
offer their own
ideas, and
gives up when
it is difficult

Program is
functional and
refined, with
extra features
that add
functionality
or improve
upon the
original
design

Execution

Content

Reflection

Habits
of
mind

Competent Proficient Distinguished

http://www.edutopia.org/pdfs/blogs/edutopia-yokana-maker-rubric.pdf

GLOSSARY FOR YOUNGER STUDENTS
Ability: Code that can be reused

Algorithm: A recipe for a program

Coding: Telling computers what to do

Concurrence: Two things happening at the same time

Conditional: Statements of the form “IF (something is true) THEN (do an action)”.

Debugging: Finding mistakes in your code and fixing them

Event: When something happens

Iteration: Having ideas and making mistakes, over and over

Logic: The process of making decisions

Loop: Code that repeats

Operator: A mathematical symbol that makes an equation

Program: A set of instructions a computer can understand

Programmer: A person who writes programs

Programming Language: A set of rules or blocks that can be used to write any program

Random: When there’s no pattern

Range: The highest and lowest number random can choose between

Rule: Instructions that tell your computer what to do (the command) and when to do it (the
event)

Sequence: The order in which instructions are given to the computer

Object: A character or text with its own rules

Value/Variable: A holder for a number

GLOSSARY 80

GLOSSARY FOR OLDER STUDENTS
Ability/Function/Procedure/Subroutine: A saved set of blocks. What we call abilities in
Hopscotch are known as functions or subroutines in other programming languages. Easily
replicable routines are a key concept in computer programming, and allow you to scale your
code and create complex programs.

Algorithm: Algorithms are at the heart of computer science; they are the recipes that
computers follow to solve problems.

Bug: An error that a programmer has made in their code

Coding: Writing the rules of behavior for a computer to follow automatically; programming

Concurrency: Two or more things happening at the same time, or triggered by the same event

Conditional: Statements of the form “IF (something is true) THEN (do an action)”

Debugging: Finding mistakes in your code (bugs) and fixing them

Event: A trigger that the computer recognizes and causes it to do some action. In Hopscotch,
events include "When the iPad is tapped" or "When the play button is tapped"

Iteration: the repetition of a process

Logic: the science of the formal processes of thinking and reasoning

Loop: a repeating set of instructions

Operator: a mathematical symbol that produces a value

Program: a set of instructions a computer can understand

Programmer: a person who writes programs

Programming Language: a set of words, rules, blocks or instructions that can be used to write
a program.

Random: Any number or item among a set. The lack of a pattern among items in a set.

Range: The highest and lowest number random can choose between

Rule: Rules tell your object what to do and when to do it. When you make an ability and pair it
with an event, you create a rule.

Sequence: An ordered list of things (instructions, blocks, numbers, etc) which can be triggered
by an event or repeated

Object: A character or text with its own rules on screen

Value: A holder for a number. Also known as a variable

GLOSSARY 81

REFERENCES
Wiggins, Grant P., and Jay McTighe. Understanding by design. Ascd, 2005.
https://books.google.com/books?id=N2EfKlyUN4QC&pg=PA2&lpg=PA2&dq=understanding
+by+design+apple
+unit&source=bl&ots=go7En3XO2v&sig=DVwYby63ggHB271t2LLoLKzue4E&hl=en&sa=X&ei=
ntudVZejHceGsAWrkoHQBQ&ved=0CB8Q6AEwAA#v=onepage&q=apple&f=false

https://computationalthinkingcourse.withgoogle.com

http://csta.acm.org/Curriculum/sub/CurrFiles/CompThinkingFlyer.pdf

http://www.corestandards.org/Math/Practice/

http://www.nextgenscience.org/sites/ngss/files/Appendix%20F%20%20Science%20and
%20Engineering%20Practices%20in%20the%20NGSS%20-%20FINAL%20060513.pdf

http://www.edutopia.org/pdfs/blogs/edutopia-yokana-maker-rubric.pdf

REFERENCES 82

https://books.google.com/books?id=N2EfKlyUN4QC&pg=PA2&lpg=PA2&dq=understanding+by+design+apple+unit&source=bl&ots=go7En3XO2v&sig=DVwYby63ggHB271t2LLoLKzue4E&hl=en&sa=X&ei=ntudVZejHceGsAWrkoHQBQ&ved=0CB8Q6AEwAA#v=onepage&q=apple&f=false
https://books.google.com/books?id=N2EfKlyUN4QC&pg=PA2&lpg=PA2&dq=understanding+by+design+apple+unit&source=bl&ots=go7En3XO2v&sig=DVwYby63ggHB271t2LLoLKzue4E&hl=en&sa=X&ei=ntudVZejHceGsAWrkoHQBQ&ved=0CB8Q6AEwAA#v=onepage&q=apple&f=false
https://books.google.com/books?id=N2EfKlyUN4QC&pg=PA2&lpg=PA2&dq=understanding+by+design+apple+unit&source=bl&ots=go7En3XO2v&sig=DVwYby63ggHB271t2LLoLKzue4E&hl=en&sa=X&ei=ntudVZejHceGsAWrkoHQBQ&ved=0CB8Q6AEwAA#v=onepage&q=apple&f=false
https://books.google.com/books?id=N2EfKlyUN4QC&pg=PA2&lpg=PA2&dq=understanding+by+design+apple+unit&source=bl&ots=go7En3XO2v&sig=DVwYby63ggHB271t2LLoLKzue4E&hl=en&sa=X&ei=ntudVZejHceGsAWrkoHQBQ&ved=0CB8Q6AEwAA#v=onepage&q=apple&f=false
https://computationalthinkingcourse.withgoogle.com
http://csta.acm.org/Curriculum/sub/CurrFiles/CompThinkingFlyer.pdf
http://www.corestandards.org/Math/Practice/
http://www.nextgenscience.org/sites/ngss/files/Appendix%20F%20%20Science%20and%20Engineering%20Practices%20in%20the%20NGSS%20-%20FINAL%20060513.pdf
http://www.nextgenscience.org/sites/ngss/files/Appendix%20F%20%20Science%20and%20Engineering%20Practices%20in%20the%20NGSS%20-%20FINAL%20060513.pdf
http://www.edutopia.org/pdfs/blogs/edutopia-yokana-maker-rubric.pdf

ACKNOWLEDGMENTS

ACKNOWLEDGMENTS 83

Huge thanks to Dr. Emily Thomforde, David Dulberger, Jesse Beutow, Thomas Abend, Ashley
Gavin, Elizabeth McDonald, Jessica Wertheim, Redwood City Public Library, Taft Community
School, and all of the educators who have provided ideas for and feedback on this curriculum.

Most importantly, thanks to Hopscotchers everywhere for making amazing things and reminding
us that learning should be fun. This curriculum is inspired by and dedicated to you <3.

